高等学校化学学报 ›› 2019, Vol. 40 ›› Issue (11): 2332.doi: 10.7503/cjcu20190309
吴为1,刘玉春1,朱冠存1,安佳钰1,窦广鹏1,王雨雁1,刘靖1,*(),孙冬兰2,*(
),郭也平3
收稿日期:
2019-05-30
出版日期:
2019-11-10
发布日期:
2019-08-20
通讯作者:
刘靖,孙冬兰
E-mail:jingliu@tust.edu.cn;sundonglan@tust.edu.cn
基金资助:
WU Wei1,LIU Yuchun1,ZHU Guancun1,AN Jiayu1,DOU Guangpeng1,WANG Yuyan1,LIU Jing1,*(),SUN Donglan2,*(
),GUO Yeping3
Received:
2019-05-30
Online:
2019-11-10
Published:
2019-08-20
Contact:
LIU Jing,SUN Donglan
E-mail:jingliu@tust.edu.cn;sundonglan@tust.edu.cn
Supported by:
摘要:
将环状碳酸酯基团引入到聚甲基丙烯酸甲酯(PMMA)侧链上, 制备了聚(2,3-环碳酸甘油酯)甲基丙烯酸酯(PDOMMA), 并用其修饰锂离子电池聚乙烯隔膜. 通过热重分析、 差示扫描量热分析及接触角和吸液率测试等研究了PDOMMA的热稳定性及其修饰的聚乙烯隔膜对电解液的浸润性和吸液率的影响, 并通过恒流充放电、 交流阻抗、 倍率性能测试及扫描电子显微镜观测等研究了修饰隔膜对锂离子电池性能的影响. 结果表明, 与未修饰隔膜相比, 修饰隔膜对电解液浸润性更优异(20 s内便完全浸润), 吸液率更高(440%), 电池循环性能更好(放电比容量提高了12.3%).
中图分类号:
TrendMD:
吴为, 刘玉春, 朱冠存, 安佳钰, 窦广鹏, 王雨雁, 刘靖, 孙冬兰, 郭也平. 甲基丙烯酸类聚合物修饰的聚乙烯隔膜在锂离子电池中的应用. 高等学校化学学报, 2019, 40(11): 2332.
WU Wei, LIU Yuchun, ZHU Guancun, AN Jiayu, DOU Guangpeng, WANG Yuyan, LIU Jing, SUN Donglan, GUO Yeping. Application of Polyethylene Separator Modified by Methyl Acrylic Polymer in Lithium Ion Battery †. Chem. J. Chinese Universities, 2019, 40(11): 2332.
Fig.2 Photographs of static contact angle of 1 mol/L LiPF6 in EC+DMC(volume ratio 1:1) liquid electrolyte on uncoated separator initial(A) and after 15 min(B) and on coated separator initial(A') and after 20 s(B'), respectively
Fig.5 Alternating current impedance curve of uncoated and coated separator at room temperature SS/separator/SS cells, frequency range 1.0 MHz — 0.01 Hz, amplitude 10 mV.
Fig.6 Discharge specific capacity(A) and coulombic efficiency(B) of the Li/MCMB cells with uncoated or coated separator under 0.2C rate between the voltage ranges of 0.005—1.5 V at room temperature for 50 cycles and discharge specific capacity of Li/MCMB cells with uncoated or coated separator at various rates cycling(C)
Fig.7 Alternating current impedance curves of the Li/MCMB cells with the uncoated and coated separators after 2 cycles(A) and after 20 cycles(B) Frequency range: 1.0 MHz—0.01 Hz, amplitude 10 mV.
Fig.8 SEM images of MCMB electrodes (A) Fresh MCMB electrode; (B) MCMB electrode of Li/MCMB cell with uncoated separator after 50 cycles; (C) MCMB electrode of Li/MCMB cell with coated separator after 50 cycles. Acceleration voltage: 20 kV.
[50] | Xie H. L., Liao Y. H., Sun P., Chen T. T., Rao M. M., Li W. S., Electrochimica Acta, 2014,127(1), 327— 333 |
[51] | Verma P., Maire P., Novák P ., Electrochimica Acta, 2010,55(22), 6332— 6341 |
[52] | Röser S., Lerchen A., Ibing L., Cao X., Kasnatscheew J., Glorius F., Winter M., Wagner R ., Chemistry of Materials, 2017,29(18), 7733— 7739 |
[53] | Zhao H., Zhou X., Park S. J., Shi F. F., Fu Y. B., Ling M., Yucn N., Battagliaa V., Liu G., Journal of Power Sources, 2014,263(1), 288— 295 |
[54] | Winter M., Barnett B., Xu K ., Chemical Reviews, 2018,118(23), 11433— 11456 |
[55] | Zhang S. S., Journal of Power Sources, 2007,163(2), 713— 718 |
[56] | Chen R. J., Zhu L., Wu F., Li L., Zhang R., Chen S., Journal of Power Sources, 2014,245(1), 730— 738 |
[57] | Zhang S. S., Xu K., Jow T. R., Electrochimica Acta, 2004,49(7), 1057— 1061 |
[58] | Xu Q., Kong Q. S., Liu Z. H., Zhang J. J., Wang X. J., Liu R. Z., Yue L. P., Cui G. L., RSC Advances, 2014,4(16), 7845— 7850 |
[59] | Prasanna K., Subburaj T., Lee W. J., Lee C. W., Electrochimica Acta, 2014,137(10), 273— 279 |
[60] | Yi J., Tan C. L., Li W. S., Liao Y. H., Rao M. M., Journal of South China Normal University(Natural Science Edition), 2009, ( S1), 228— 232 |
( 易金, 谭春林, 李伟善, 廖友好, 饶睦敏 . 华南师范大学学报(自然科学版), 2009, ( S1), 228— 232) | |
[1] | Lu L. G., Han X. B., Li J. Q., Hua J. F., Ouyang M. G., Journal of Power Sources, 2013,226(3), 272— 288 |
[2] | Marom R., Amalraj S. F., Leifer N., Jacob, D., Aurbach D., Journal of Materials Chemistry, 2011,21(27), 9938— 9954 |
[3] | Li Z., Cao T. T., Zhang Y., Han Y., Xu S. M., Xu Z. H., Journal of Membrane Science, 2017,540(17), 422— 429 |
[4] | Zhang J. Q., Sun B., Huang X. D., Chen S. Q., Wang G. X., Scientific Reports, 2014,4, 6007 |
[5] | Xiang Y. Y., Zhu W. Y., Qiu W. J., Guo W., Lei J. H., Liu D., Qu D. Y., Xie Z. Z., Tang H. L., Li J. S., Chemistry Select, 2018,3(3), 911— 916 |
[6] | Zhang J.J., Yue L. P., Kong Q. S., Liu Z. H., Zhou X. H., Zhang C. J., Xu Q., Zhang B., Ding G. L., Qin B. S., Duan Y. L., Wang Q. F., Yao J. H., Cui G. L., Chen L. Q., Scientific Reports, 2014,4, 3935 |
[7] | Huang X., Hitt J., Journal of Membrane Science, 2013,425/426(1), 163— 168 |
[8] | Croce F., Focarete M. L., Hassoun J., Meschini I., Scrosati B., Energy & Environmental Science, 2011,4(3), 921— 927 |
[9] | Cho T.H., Tanaka M., Ohnishi H., Kondo Y., Yoshikazu M., Nakamura T., Sakai T., Journal of Power Sources, 2010,195(13), 4272— 4277 |
[10] | Zhang L., Xiong Y., Sun S. P., Zhang L., Li S. S., Liu X. G., Xu Z. H., Xu S. M., Journal of Membrane Science, 2018,565(1), 50— 60 |
[11] | Xu W. X., Wang Z. Y., Shi L. Y., Ma Y., Yuan S., Sun L. N., Zhao Y., Zhang M. H., Zhu J. F., ACS Applied Materials Interfaces, 2015,7(37), 20678— 20686 |
[12] | Kim K. J., Kim J. H., Park M. S., Kwon H. K., Kim H., Kim Y. J., Journal of Power Sources, 2012,198(15), 298— 302 |
[13] | Choi J.A., Kim S. H., Kim D. W., Journal of Power Sources, 2010,195(18), 6192— 6196 |
[14] | Shi J. L., Xia Y. G., Yuan Z. Z., Hu H. S., Li X. F., Zhang H. M., Liu Z. P., Scientific Reports, 2015,5, 8255 |
[15] | Chen W. J., Shi L. Y., Wang Z. Y., Zhu J. F., Yang H. J., Mao X. F., Chi M. M., Sun L. N., Yuan S., Carbohydrate Polymers, 2016,147(20), 517— 524 |
[16] | Lee Y. J., Lee H., Lee T., Ryou M. H., Lee Y. M., Journal of Power Sources, 2015,294(30), 537— 544 |
[17] | Man C. Z., Jiang P., Wong K. W., Zhao Y., Tang C. Y., Fan M. K., Lau W. M., Mei J., Li S. M., Liu H., Hui D., Journal of Materials Chemistry A, 2014,2(30), 11980— 11986 |
[18] | Osada I., Vries H. D., Scrosati B., Passerini S., Angewandte Chemie International Edition, 2016,55(2), 500— 513 |
[19] | Park M. J., Choi I., Hong J., Kim O., . Journal of Applied Polymer Science, 2013,129(5), 2363— 2376 |
[20] | Kalhoff J. L., Eshetu G. G., Bresser D., Passerini S., ChemSusChem, 2015,8(17), 2154— 2175 |
[21] | Tan S., Ji Y. J., Zhang Z. R., Yang Y., ChemPhysChem, 2014,15(10), 1956— 1969 |
[22] | Li J., Lin Y., Yao H. H., Yuan C. F., Liu J., ChemSusChem, 2014,7(7), 1901— 1908 |
[23] | Liang S. W., Choi U. H., Liu W. J., Runt J., Colby R. H., Chemistry of Materials, 2012,24(12), 2316— 2323 |
[24] | Zhang Z. C., Lyons L. J., West R., Amine K., West R., Silicon Chemistry, 2007,3(5), 259— 266 |
[25] | Tillmann S. D., Isken P., Lexbalducci A., Journal of Physical Chemistry C, 2015,119(27), 14873— 14878 |
[26] | Matsumoto K., Kakehashi M., Ouchi H., Yuasa M., Endo T ., Macromolecules, 2016,49(24), 9441— 9448 |
[27] | Jana S., Parthiban A., Chai C. L. L., Chemical Communications, 2010,46(9), 1488— 1490 |
[28] | Chen T. T., Liao Y. H., Wang X. S., Luo X. Y., Li X. P., Li W. S., Electrochimica Acta, 2016,191(10), 923— 932 |
[29] | Chai J. C., Liu Z. H., Ma J., Wang J., Liu X. C., Liu H. S., Zhang J. J., Cui J. L., Chen L. Q., Journal of Electroanalytical Chemistry, 2017,804(2), 133— 139 |
[30] | Zhang Z. Q., Li H., Lv X. Y., Liu H. Z., Theng L. X., Advanced Materials Research, 2012,463/464, 1378— 1381 |
[31] | Shi J. L., Fang L. F., Li H., Zhang H., Zhu B. K., Zhu L. P., Journal of Membrane Science, 2013,437, 160— 168 |
[32] | Lu X., Wang B ., China Synthetic Fiber Industry, 2017,40(2), 22— 27 |
( 陆茜, 王彪 . 合成纤维工业, 2017,40(2), 22— 27) | |
[33] | Li R. J., Liu J., Tao H. R., Sun D. L., Xiao D. G., Liu C. J., Thermochimica Acta, 2016,624(20), 76— 81 |
[34] | Camara F., Caillol S., Boutevin B ., European Polymer Journal, 2014,61(1), 133— 144 |
[35] | Guo M. Y., Zong C. X., Ai S. J., Fu F. Z., Wang Q., Liu J., Sun D. L., Guo Y. L., Guo Y. P., Chem. J. Chinese Universities, 2017,38(10), 1857— 1863 |
( 郭梦雅, 宗成星, 艾淑娟, 付凤至, 王琪, 刘靖, 孙冬兰, 郭艳玲, 郭也平 . 高等学校化学学报, 2017,38(10), 1857— 1863) | |
[36] | Ali U., Karim K. J. B. A., Buang N. A., Polymer Reviews, 2015,55(4), 1— 28 |
[37] | Fan L., Wei S. Y., Li S. Y., Li Q., Lu Y. Y., Advanced Energy Materials, 2018,8(11), 1— 22 |
[38] | Chen X. L., Pan J., Zhao Y., Liao M., Peng H. S., Advanced Energy Materials, 2017,8(7), 1— 16 |
[39] | Sun P., Liao Y. H., Xie H. I., Chen T. T., Rao M. M., Li W. S., Journal of Power Sources, 2014,269(10), 299— 307 |
[40] | Liu J., Li R. J., Guo M. Y., Tao H. R., Sun D. L., Zong C. X., Liu C. J., Fu F. Z., Thermochimica Acta, 2017,654(10), 179— 185 |
[41] | Ahmad Z., Al-Awadi N. A., Al-Sagheer F., Polymer Degradation and Stability, 2008,93(2), 456— 465 |
[42] | Beyler C. L., Hirschler M. M., . Thermal Decomposition of Polymers, SFPE Handbook of Fire Protection Engineering, 3rd Ed., Springer, New York, 2001, 110— 131 |
[43] | Huang P. F., . Research on the Fire Risk of Lithium Ion Battery and the Critical Condition of Thermal Runaway Behavior , University of Science and Technology of China, Hefei, 2018 |
( 黄沛丰 . 锂离子电池火灾危险性及热失控临界条件研究, 合肥: 中国科学技术大学, 2018) | |
[44] | Wang D., Zhao Z. L., Yu L. N., Zhang K. J., Na H., Ying S. Q., Xu D. C., Zhang G., Journal of Applied Polymer Science, 2014,131(15), 4401— 4404 |
[45] | Britz J., Meyer W. H., Wegner G., Macromolecules, 2007,40(21), 7558— 7565 |
[46] | Ye W., Zhu J., Liao X.J., Jiang S. H., Li Y. H., Fang H., Hou H. Q., Journal of Power Sources, 2015,299(20), 417— 424 |
[47] | Huang X. S., Journal of Solid State Electrochemistry, 2011,15(4), 649— 662 |
[48] | Ma T., Cui Z. Y., Wu Y., Qin S. H., Wang H., Yan F., Han N., Li J. X., Journal of Membrane Science, 2013,444(10), 213— 222 |
[49] | Suharto Y., Lee Y., Yu J. S., Choi W. C., Kim K. J., Journal of Power Sources, 2018,376(1), 184— 190 |
[1] | 贾洋刚, 邵霞, 程婕, 王朋朋, 冒爱琴. 赝电容控制型钙钛矿高熵氧化物La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3负极材料的制备及储锂性能[J]. 高等学校化学学报, 2022, 43(8): 20220157. |
[2] | 鲍俊全, 郑仕兵, 苑旭明, 史金强, 孙田将, 梁静. 有机盐PTO(KPD)2作为高性能锂离子电池正极材料的研究[J]. 高等学校化学学报, 2021, 42(9): 2911. |
[3] | 李辉阳, 朱思颖, 李莎, 张桥保, 赵金保, 张力. 锂离子电池硅氧化物负极首次库伦效率的影响因素与提升策略[J]. 高等学校化学学报, 2021, 42(8): 2342. |
[4] | 卓增庆, 潘锋. 基于软X射线光谱的锂电池材料的电子结构与演变的研究进展[J]. 高等学校化学学报, 2021, 42(8): 2332. |
[5] | 吴卓彦, 李至, 赵旭东, 王倩, 陈顺鹏, 常兴华, 刘志亮. 一步法高效制备纳米Si/C复合材料及其在高性能锂离子电池中的应用[J]. 高等学校化学学报, 2021, 42(8): 2500. |
[6] | 易聪华, 苏华坚, 钱勇, 李琼, 杨东杰. 木质素纳米炭的制备及作为锂离子电池负极的性能研究[J]. 高等学校化学学报, 2021, 42(6): 1807. |
[7] | 毛尔洋, 王莉, 孙永明. 锂离子电池高容量合金基含锂负极材料的研究进展[J]. 高等学校化学学报, 2021, 42(5): 1552. |
[8] | 刘铁峰, 张奔, 盛欧微, 佴建威, 王垚, 刘育京, 陶新永. 硅负极黏结剂的研究进展[J]. 高等学校化学学报, 2021, 42(5): 1446. |
[9] | 王弈艨, 刘凯, 王保国. 高镍三元正极材料的表面包覆策略[J]. 高等学校化学学报, 2021, 42(5): 1514. |
[10] | 石颖, 胡广剑, 吴敏杰, 李峰. 低温等离子体在锂离子电池材料中的应用[J]. 高等学校化学学报, 2021, 42(5): 1315. |
[11] | 王任衡, 肖哲, 李艳, 孙一翎, 范姝婷, 郑俊超, 钱正芳, 贺振江. 固相烧结法制备锂离子电池正极材料Li2FeP2O7及其电化学性能研究[J]. 高等学校化学学报, 2021, 42(4): 1299. |
[12] | 李淑荟, 黄剑莹, 赖跃坤. 绿色环保特殊浸润性纺织品的前沿进展[J]. 高等学校化学学报, 2021, 42(4): 1043. |
[13] | 高小雅, 左自成, 李玉良. 石墨炔电化学电池界面构筑[J]. 高等学校化学学报, 2021, 42(2): 321. |
[14] | 孙全虎, 卢天天, 何建江, 黄长水. 含异原子石墨炔基电极材料的研究进展[J]. 高等学校化学学报, 2021, 42(2): 366. |
[15] | 周战, 马录芳, 谭超良. 层状钒青铜纳米片的制备及其锂离子电池阳极材料性能[J]. 高等学校化学学报, 2021, 42(2): 662. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||