高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (4): 1043.doi: 10.7503/cjcu20200646
收稿日期:
2020-09-02
出版日期:
2021-04-10
发布日期:
2021-01-22
通讯作者:
赖跃坤
E-mail:yklai@fzu.edu.cn
基金资助:
LI Shuhui, HUANG Jianying, LAI Yuekun()
Received:
2020-09-02
Online:
2021-04-10
Published:
2021-01-22
Contact:
LAI Yuekun
E-mail:yklai@fzu.edu.cn
摘要:
介绍了仿生超疏表面的工作机制以及疏水整理液的发展, 系统综述了近10年来特殊浸润性在开拓多功能绿色纺织领域的研究进展, 讨论了双面超疏、 超疏/超亲、 图案化及可响应浸润性纺织品的制备技术及应用, 介绍近几年在纺织品疏水化功能改性方面取得的前瞻性工作, 包括自清洁防污、 油水分离、 机械耐久、 图案化、 自修复、 单向运输等, 特别是在智能响应、 电子可穿戴、 能源等新兴领域方面的应用. 最后, 对超疏水纺织功能材料目前所面临的挑战及未来发展的方向进行了展望.
中图分类号:
TrendMD:
李淑荟, 黄剑莹, 赖跃坤. 绿色环保特殊浸润性纺织品的前沿进展. 高等学校化学学报, 2021, 42(4): 1043.
LI Shuhui, HUANG Jianying, LAI Yuekun. Advanced Progress of Green Textile with Special Wettability. Chem. J. Chinese Universities, 2021, 42(4): 1043.
Fig.2 Oil CA(<5°)(A) and WCA(≥150°)(B) on the treated fabric surface, a practical demonstration of oleophobic and superhydrophobic(water dyed with methylene blue) fabric bag filled with PU sponges(C), oil separation process froman oil?watermixture with superhydrophobic fabric bag filledwith PU sponges[(D)—(G)], the separation efficiencies for different mixtures(H) and the absorption capacity of the individual treated fabric, PU sponge filled in the fabric bag and original PU sponge for various oils and organic solvents(I)[74], schematic illustration of fluorine?free and robust superhydrophobic PDMS?Ormosil@fabric(J), SEM images of pristine cotton and PDMS?Ormosil@fabric(insets: the corresponding static and dynamic)[(K), (L)], the process of selective collection of oils from surfac?tant?free oil?in?water emulsion by using a superhydrophobic PDMS?Ormosil@fabric with porous sponge(M—P), the photographs of oil?in water emulsion before and after clean?up[(Q)—(S)], the diagram showing the mechanism of oil?in?water emulsion separation(T)[75](D)—(G) For visual purpose, oil is dyedwith Oil Red O and water is dyedwithmethylene blue.(A)—(I) Copyright 2016, Wiley?VCH; (J)—(T) Copyright 2016, Royal Society of Chemistry.
Fig.3 Schematic diagram for preparation of fluorine?free, sustainable superhydrophobic cotton fabric(CF)(up), AFM images of pristine CF, etched CF and superhydrophobic CF(down)(A), separation efficiency of superhydrophobic CF towards various water/oil mixture(B), flux of oils passing through the as?prepared superhydrophobic CF(C), separation efficiency of CF towards n?heptane/water mixture for 10 cycles(D), WCAs of superhydrophobic CF after separating various oil/water mixture for 10 cycles(E)[23], schematic illustration of the fabrication of robust and environmental?friendly superhydrophobic MTCS@enzyme?etching fabric(F), SEM images of MTCS@alkaline protease?etched silk surface(G), wool surface(H) and MTCS@cellulase?etched cotton fabric(I), oil/water separation process of modified superhydrophobic cotton fabric[(J)—(M)][22](A)—(E) Copyright 2019, American Chemical Society; (F)—(M) Copyright 2019, Elsevier.
Fig.4 CAs of the prepared superhydrophobic PDMS@SiO2 PET textile after different durability tests(A), CA changes of the superhydrophobic textile with ultrasonic time(inset is SEM image after ultrasonic for 18 h)(B), laundering cycles(inset is SEM image after laundreing for 112 cycles)(C), abrasion cycles(inset is SEM image after abrasion for 600 cycles), respectively(D), water droplet on the worn?out area of fabricated textile after 600 abrasion cycles(E)[83], the chemical structure of 5Acl and BPEI, the diagram shows 1, 4 conjugated addition reaction betwwen primary amine and acrylate groups(F), optical images of turbidity in BPEI/5Acl mixture(after 1 h of mixing) in absence(left) and presence of unmodified(middle) and BPEI?modified(right) PU substrate(G), the digital images of water droplets on the superhydrophobic PU substrate before and after streching 1.5 times[(H), (I)], the relationship between advancing contact angles(black) and contact angle hysteresis(grey) on superhydrobic PU substrate with a 200% strain and repetitive deformation(with 150% strain) for 1000 cycles[(J), (K)], optical images when superhydrophobic PU substrate undertake bending and twisting[(L), (M)], the digital images[(N), (P), (R)] and CAs of superhydrophobic PU after bending[(O), (Q), (S)], sand grains drop test and tape?peeling; chemical durability of superhydrophobic PU substrate(T)[86](A)—(E) Copyright 2017, American Chemical Society; (F)—(T) Copyright 2017, Royal Society of Chemistry.
Fig.5 Schematic illustrating the preparation of superhydrophobic ZrPM(A), CAs changes of ZrPM over various air plasma etching and heating treatment(B)[90], schematic diagram of self?healing mechanism on PDMS@cotton(C), EDS element mass ratio of various fabric(D), CAs changes of PDMS@cotton during abrasion?heating cycles(E), wide and narrow Si2p XPS spectra of PDMS@cotton under various conditions[(F), (G)][92](A), (B) Copyright 2018, American Chemical Society; (C)—(G) Copyright 2020, Royal Society of Chemistry.
Fig.6 Fabrication process of waterproof conductive fiber(A), conductive fiber was immersed into water as interconnector and operated LED light(B), washing durability and self?cleaning of as?prepared waterproof conductive fiber(C)[118], schematic illustration of the preparation process of HCOENPs(D), hydrophobic PET textile by spraying(E), dependence of CAs of HCOENPs?coated PET with different washing time under harsh environment(neutral, acid, alkaline), insets are CA hysteresis images(F), self?cleaning property of PET textile before and after coating HCOENPs(G), charging curve of a 16 μF capacitor of all?fabric based DMTEG(H), all?fabric based DMTEG constructed as wristband to harvest energy and drive the commercial LEDs(I)[120](A)—(C) Copyright 2018, American Chemical Society; (D)—(I) Copyright 2017, Wiley?VCH.
Fig.7 Schematic illustrating the preparation process of PPy/MXene(A), preparation of PPy/MXene?coated PET textile and silicone?coated M?PET(B), multifunctional silicone?coated M?PET with EMI shiel?ding, water resistance and joule heating(C), effects of water?resistant treatment on the stability of EMI shielding performance(D)[126], the fabrication process of CPC?AgNM/Textile(E), display of water flow impact to the surface of CPC?AgNM/Textile(F), a LED lighted unver 9 V with CPC?AgNM/Textile used as a conductive element(G), EMI shielding property of CPC?AgNM/Textile(H)[128], multifunctional smart textile derived from merino wool/nylon polymer nanocomposites used for microwave absorber and soft touch sensor(I)[129](A)―(D) Copyright 2019, Wilery?VCH; (E)―(H) Copyright 2019, American Chemical Society; (I) Copyright 2020, American Chemical Society.
Fig.8 Schematic illustration of fabrication for dual?functional superhydrophobic textile with roll?down/ pinned states(A), time sequences of water?droplets transportation(B)[137], illustration of superhydrophobic pattern cotton fabric by electrospray method(C), effect of superhydrophobic pattern on air permeability in both dry and wet condition(D)[138](A), (B) Copyright 2018, American Chemical Society; (C), (D) Copyright 2018, Wiley?VCH.
Fig.9 SEM images of common[(A), (B)] and modified gauze[(D), (E)]; blood droplet on the surfaces of common and modified gauze(insets: the corresponding blood CAs images)[(C), (F)], photos of rats with injured femoral artery warpped with bilayer common gauze, bilayer modified superhydrophobic gauze and janus gauze(with one layer of common gauze and another layer of modified gauze)(G), total blood loss of common and janus gauze under different injures(H), total blood loss and survival time of common and janus gauze in carotid artery injury(I)[139]Copyright 2018, Wiley?VCH.
Fig.10 Schematic illustration of superhydrophobic/superhydrophilic micro?pattern on cotton fabric by click chemistry and fluorine?containing modification(A), designned photomask images and as?prepared micro?pattern cotton fabric images(water dyed with methylene blue)(B), repea? table wettability tansition by alternative of TCVS coating and UV irradiation(C)[140], reversible hydrophobic/hydrophilic transition of TiO2?coated cotton fabric between UV irradiation and temperature(D), water droplets transport from superhydrophobic surface to UV?irradiated superhydrophilic surface(E), back side and front side of the wetting pattern[(F), (G)], cross?sectional optical image of patterned surface, water dyed with green color transport from UV?opaque side to UV?irradiated side(H)[142](A)—(C) Copyright 2017, Wiley?VCH; (D)—(H) Copyright 2018, Wiley?VCH.
Fig.11 Schematic diagram of reversible wettability polyester fabric based on pH?responsive branched polymer nanoparticles(PRBN)(A), reversible transition of HFBMA?PRBN(2,2,3,4,4,4?hexafluorobutyl methacrylate) size and superhydrophobic/superhydrophility between pH=1 and pH=7, respectively[(B), (C)][143], the time sequence of water contact angle on the coated fabric(Ⅰ), ex situ acid treated cotton fabric(Ⅱ) and NaOH treated cotton fabric(Ⅲ), respectively(D), photographs of acid, neutral, and base water droplets onto the coated fabric(E), the mechanism of pH responsive cotton fabric(F)[145](A)—(C) Copyright 2020, American Chemical Society; (D)—(F) Copyright 2016, American Chemical Society.
1 | Wang S., Jiang L., Adv. Mater.,2007,19(21), 3423—3424 |
2 | Liang T., Fan Z. Z., Liu Q. W., Wang J. G., Cai L., Fu Y. F., Tong Q. L., Chem. Ind. & Eng. Pro.(China),2019, 38(7), 3185—3193( 梁婷, 范振忠, 刘庆旺, 王继刚, 才力, 付沅峰, 仝其雷. 化工进展, 2019, 38(7), 3185—3193) |
3 | Wang J. M., Wang K., Zheng Y. M., Jiang L., Chem. J. Chinese Universities,2010,31(8), 1596—1599(王景明, 王轲, 郑咏梅, 江雷. 高等学校化学学报, 2010, 31(8), 1596—1599) |
4 | Du C. G., Xia F., Wang S. T., Wang J. X., Song Y. L., Jiang L., Chem. J. Chinese Universities,2010,31(3), 421—431(杜晨光, 夏帆, 王树涛, 王京霞, 宋延林, 江雷. 高等学校化学学报, 2010, 31(3), 421—431) |
5 | Barthlott W., Neinhuis C., Planta,1997,202(1), 1—8 |
6 | Feng L., Li S., Li Y., Li H., Zhang L., Zhan J., Song Y., Liu B., Jiang L., Zhu D., Adv. Mater.,2002,14, 1857—1860 |
7 | Wang S., Liu K., Yao X., Jiang L., Chem. Rev.,2015,115(16), 8230—8293 |
8 | Gao L. C., McCarthy T. J., Langmuir,2006,22(6), 2966—2967 |
9 | Jin M. H., Feng X. J., Feng L., Sun T. L., Zhai J., Li T. J., Jiang L., Adv. Mater.,2005,17, 1977—1981 |
10 | Cassie A. B. D., Baxter S., Transactions of the Faraday Society,1944,40(0), 546—551 |
11 | Li Y., Li Q., Zhang C., Cai P., Bai N., Xu X., Chem. Eng. J.,2017,323, 134—142 |
12 | Wang X., Yu P., Zhang K., Wu M., Wu Q., Liu J., Yang J., Zhang J., ACS Appl. Polym. Mater.,2019,1(11), 2875—2882 |
13 | Lu Y., Sanjayan S., Song J., Crick C. R., Carmalt C. J., Parkin I. P., Science,2015,347(6226), 1132—1135 |
14 | Li S. H., Huang J. Y., Ge M. Z., Cao C. Y., Deng S., Zhang S. N., Chen G. Q., Zhang K. Q., Al⁃Deyab S. S., Lai Y. K., Adv. Mater. Interfaces,2015,2(14), 1500220 |
15 | Huang J. Y., Li S. H., Ge M. Z., Wang L. N., Xing T. L., Chen G. Q., Liu X. F., Al⁃Deyab S. S., Zhang K. Q., Chen T., Lai Y. K., J. Mater. Chem. A,2015,3(6), 2825—2832 |
16 | Liu F., Ma M., Zang D., Gao Z., Wang C., Carbohydr. Polym.,2014,103, 480—487 |
17 | Periolatto M., Ferrero F., Montarsolo A., Mossotti R., Cellulose,2013,20(1), 355—364 |
18 | Fu S., Zhou H., Wang H., Ding J., Liu S., Zhao Y., Niu H., Rutledge G. C., Lin T., RSC Adv.,2018,8(2), 717—723 |
19 | Liu Y., Pei X., Liu Z., Yu B., Yan P., Zhou F., J. Mater. Chem. A,2015,3(33), 17074—17079 |
20 | Mai Z., Xiong Z., Shu X., Liu X., Zhang H., Yin X., Zhou Y., Liu M., Zhang M., Xu W., Chen D., Carbohydr. Polym.,2018,199, 516—525 |
21 | Zhu T., Li S., Huang J., Mihailiasa M., Lai Y., Mater. Design,2017,134, 342—351 |
22 | Cheng Y., Zhu T., Li S., Huang J., Mao J., Yang H., Gao S., Chen Z., Lai Y., Chem. Eng. J.,2019,355, 290—298 |
23 | Cheng Q. Y., Zhao X. L., Weng Y. X., Li Y. D., Zeng J. B., ACS Sustain. Chem. Eng.,2019,7(18), 15696—15705 |
24 | Pereira C., Alves C., Monteiro A., Magen C., Pereira A. M., Ibarra A., Ibarra M. R., Tavares P. B., Araujo J. P., Blanco G., Pintado J. M., Carvalho A. P., Pires J., Pereira M. F., Freire C., ACS Appl. Mater. Interfaces,2011,3(7), 2289—2299 |
25 | Zhou X., Zhang Z., Xu X., Guo F., Zhu X., Men X., Ge B., ACS Appl. Mater. Interfaces,2013,5(15), 7208—7214 |
26 | Chatterjee S., Sinha Mahapatra P., Ibrahim A., Ganguly R., Yu L., Dodge R., Megaridis C. M., Langmuir,2018,34(8), 2865—2875 |
27 | Sen U., Chatterjee S., Sinha Mahapatra P., Ganguly R., Dodge R., Yu L., Megaridis C. M., ACS Appl. Mater. Interfaces,2018,10(5), 5038—5049 |
28 | Zahid M., Heredia⁃Guerrero J. A., Athanassiou A., Bayer I. S., Chem. Eng. J.,2017,319, 321—332 |
29 | Li S. H., Huang J. Y., Ge M. Z., Li S. W., Xing T. L., Chen G. Q., Liu Y. Q., Zhang K. Q., Al⁃Deyab S. S., Lai Y. K., Mater. Design,2015,85, 815—822 |
30 | Jiang J., Zhang G., Wang Q., Zhang Q., Zhan X., Chen F., ACS Appl. Mater. Interfaces,2016,8(16), 10513—10523 |
31 | Prakash M. G., Mamta D., Balasubramanian K., RSC Adv.,2016,6(112), 111250—111260 |
32 | Liu S., Zhou H., Wang H., Zhao Y., Shao H., Xu Z., Feng Z., Liu D., Lin T., Adv. Mater. Interfaces,2017,4(11), 1700027 |
33 | Manatunga D. C., de Silva R. M., de Silva K. M. N., Appl. Surf. Sci.,2016,360, 777—788 |
34 | Xue C. H., Yin W., Zhang P., Zhang J., Ji P. T., Jia S. T., Colloid Surface A,2013,427, 7—12 |
35 | Zhu Q., Gao Q., Guo Y., Yang C. Q., Shen L., Ind. Eng. Chem. Res.,2011,50(10), 5881—5888 |
36 | Khalil⁃Abad M. S., Yazdanshenas M. E., J. Colloid Interface Sci.,2010,351(1), 293—298 |
37 | Yazdanshenas M. E., Shateri⁃Khalilabad M., Ind. Eng. Chem. Res.,2013,52(36), 12846—12854 |
38 | Wu Y., Qi H., Li B., Zhanhua H., Li W., Liu S., Carbohydr. Polym.,2017,155, 294—302 |
39 | Hou K., Zeng Y., Zhou C., Chen J., Wen X., Xu S., Cheng J., Pi P., Chem. Eng. J.,2018,332, 150—159 |
40 | Rabnawaz M., Wang Z., Wang Y., Wyman I., Hu H., Liu G., RSC Adv.,2015,5(49), 39505—39511 |
41 | Liu Y., Liu Z., Liu Y., Hu H., Li Y., Yan P., Yu B., Zhou F., Small,2015,11(4), 426—431 |
42 | Liu H., Huang J., Li F., Chen Z., Zhang K. Q., Al⁃Deyab S. S., Lai Y., Cellulose,2016,24(2), 1129—1141 |
43 | Liu X., Textile Auxiliaries,2019,36(12), 7—10(刘翔. 印染助剂, 2019, 36(12), 7—10) |
44 | Martin J. W., Mabury S. A., Solomon K. R., Muir D. C., Environ. Toxicol. Chem.,2013,32(11), 2421—2423 |
45 | Olsen G. W., Burris J. M., Burlew M. M., Mandel J. H., Drug Chem. Toxicol.,2000,23(4), 603—620 |
46 | Apelberg B. J., Witter F. R., Herbstman J. B., Calafat A. M., Halden R. U., Needham L. L., Goldman L. R., Environ. Health Perspect.,2007,115(11), 1670—1676 |
47 | Zahid M., Mazzon G., Athanassiou A., Bayer I. S., Adv. Colloid Interface Sci.,2019,270, 216—250 |
48 | Chengelis C. P., Kirkpatrick J. B., Radovsky A., Shinohara M., Reprod. Toxicol.,2009,27(3/4), 342—351 |
49 | Russell M. H., Nilsson H., Buck R. C., Chemosphere,2013,93(10), 2419—2425 |
50 | Liu Y., Liu Y., Hu H., Liu Z., Pei X., Yu B., Yan P., Zhou F., J Phys. Chem. C,2015,119(13), 7109—7114 |
51 | Lv L. Z., Zhao W. J., Zhong X. M., Fu H., ACS Appl. Mater. Interfaces,2020,12(40), 45296—45305 |
52 | Xu L., Liu Y., Yuan X., Wan J., Wang L., Pan H., Shen Y., Cellulose,2020,27(15), 9005—9026 |
53 | Yang M., Liu W., Jiang C., Liu C., He S., Xie Y., Wang Z., Ind. Eng. Chem. Res.,2018,58(1), 187—194 |
54 | Yu X., Liu X., Shi X., Zhang Z., Wang H., Feng L., Ceram. Int.,2019,45(12), 15741—15744 |
55 | Wang H., Zhou H., Yang W., Zhao Y., Fang J., Lin T., ACS Appl. Mater. Interfaces,2015,7(41), 22874—22880 |
56 | Yang Y., Huang W., Guo Z., Zhang S., Wu F., Huang J., Yang H., Zhou Y., Xu W., Gu S., Cellulose,2019,26(17), 9335—9348 |
57 | Manna J., Goswami S., Shilpa N., Sahu N., Rana R. K., ACS Appl. Mater. Interfaces,2015,7(15), 8076—8082 |
58 | Li J. J., Zhou Y. N., Luo Z. H., ACS Appl. Mater. Interfaces,2015,7(35), 19643—19650 |
59 | Ueda E., Levkin P. A., Adv. Mater.,2013,25(9), 1234—1247 |
60 | Sasaki K., Tenjimbayashi M., Manabe K., Shiratori S., ACS Appl. Mater. Interfaces,2015,8(1), 651—659 |
61 | He X. H., Wang W., Liu Y. M., Jiang M. Y., Wu F., Deng K., Liu Z., Ju X. J., Xie R., Chu L. Y., ACS Appl. Mater. Interfaces,2015,7(31), 17471—17481 |
62 | Gu H., Li G., Li P., Liu H., Chadyagondo T. T., Li N., Xiong J., Appl. Surf. Sci.,2020,512, 144837 |
63 | Chen D., Chen F., Zhang H., Yin X., Zhou Y., Cellulose,2015,23(1), 941—953 |
64 | Chen D., Mai Z., Liu X., Ye D., Zhang H., Yin X., Zhou Y., Liu M., Xu W., Cellulose,2018,25(6), 3635—3647 |
65 | Yang M., Liu W., Jiang C., Xie Y., Shi H., Zhang F., Cellulose,2019,26(13/14), 8153—8164 |
66 | Gao S., Huang J., Li S., Liu H., Li F., Li Y., Chen G., Lai Y., Mater. Design,2017,128, 1—8 |
67 | Gao S., Dong X., Huang J., Dong J., Cheng Y., Chen Z., Lai Y., Appl. Surf. Sci.,2018,459, 512—519 |
68 | Wang J., Han F., Zhang S., Sep. Purif. Technol.,2016,164, 138—145 |
69 | Liu H., Huang J., Chen Z., Chen G., Zhang K. Q., Al⁃Deyab S. S., Lai Y., Chem. Eng. J.,2017,330, 26—35 |
70 | Shami Z., Amininasab S. M., Shakeri P., ACS Appl. Mater. Interfaces,2016,8(42), 28964—28973 |
71 | Guo H., Yang J., Xu T., Zhao W., Zhang J., Zhu Y., Wen C., Li Q., Sui X., Zhang L., ACS Appl. Mater. Interfaces,2019,11(14), 13704—13713 |
72 | Shi Y. L., Yang W., Feng X. J., Chem. J. Chinese Universities,2015,36(9), 1724—1729(石彦龙, 杨武, 冯晓娟. 高等学校化学学报, 2015, 36(9), 1724—1729) |
73 | Li W. T., Yong J. L., Yang Q., Chen F., Fang Y., Hou X., Acta Phy. Chim. Sin.,2018,34(5), 456—475(李文涛, 雍佳乐, 杨青, 陈烽, 方瑶, 侯浔. 物理化学学报, 2018, 34(5), 456—475) |
74 | Li J., Yan L., Tang X., Feng H., Hu D., Zha F., Adv. Mater. Interfaces,2016,3(9), 1500770 |
75 | Cao C., Ge M., Huang J., Li S., Deng S., Zhang S., Chen Z., Zhang K., Al⁃Deyab S. S., Lai Y., J. Mater. Chem. A,2016,4(31), 12179—12187 |
76 | Yang Z. W., Zhou S. L., Wang R., Wang F., Jiang Y., Zhang X. Q., Chem. J. Chinese Universities,2017,38(10), 1880—1887(杨梓薇, 周顺利, 王锐, 王峰, 姜延, 张秀芹. 高等学校化学学报, 2017, 38(10), 1880—1887) |
77 | Xue C. H., Guo X. J., Zhang M. M., Ma J. Z., Jia S. T., J. Mater. Chem. A,2015,3(43), 21797—21804 |
78 | Yan H., Zhou H., Ye Q., Wang X., Cho C. M., Tan A. Y. X., Xu J., RSC Adv.,2016,6(71), 66834—66840 |
79 | Mullangi D., Shalini S., Nandi S., Choksi B., Vaidhyanathan R., J. Mater. Chem. A,2017,5(18), 8376—8384 |
80 | Guo X. J., Xue C. H., Jia S. T., Ma J. Z., Chem. Eng. J.,2017,320, 330—341 |
81 | Lahiri S. K., Zhang P., Zhang C., Liu L., ACS Appl. Mater. Interfaces,2019,11(10), 10262—10275 |
82 | Guo F., Wen Q., Peng Y., Guo Z., J. Mater. Chem. A,2017,5(41), 21866—21874 |
83 | Su X., Li H., Lai X., Zhang L., Wang J., Liao X., Zeng X., ACS Appl. Mater. Interfaces,2017,9(33), 28089—28099 |
84 | Tuong V. M., Huyen N. V., Kien N. T., Dien N. V., Polymers(Basel),2019,11(9), 1388 |
85 | Hu X., Tang C., He Z., Shao H., Xu K., Mei J., Lau W. M., Small,2017,13(19), 1602353 |
86 | Rather A. M., Manna U., J. Mater. Chem. A,2017,5(29), 15208—15216 |
87 | Li Y., Li L., Sun J., Angew. Chem. Int. Ed. Engl.,2010,49(35), 6129—6133 |
88 | Xue C. H., Bai X., Jia S. T., Sci. Rep.,2016,6, 27262 |
89 | Ma Y., Zou Y., Zhang Z., Fang J., Liu W., Ni Y., Fang L., Lu C., Xu Z., Cellulose,2019,27(1), 561—573 |
90 | Zeng M., Wang P., Luo J., Peng B., Ding B., Zhang L., Wang L., Huang D., Echols I., Abo Deeb E., Bordovsky E., Choi C. H., Ybanez C., Meras P., Situ E., Mannan M. S., Cheng Z., ACS Appl. Mater. Interfaces,2018,10(26), 22793—22800 |
91 | Li D., Guo Z., J. Colloid Interface Sci.,2017,503, 124—130 |
92 | Ge M., Cao C., Liang F., Liu R., Zhang Y., Zhang W., Zhu T., Yi B., Tang Y., Lai Y., Nanoscale Horiz.,2020,5(1), 65—73 |
93 | Zhang H., Hou C., Song L., Ma Y., Ali Z., Gu J., Zhang B., Zhang H., Zhang Q., Chem. Eng. J.,2018,334, 598—610 |
94 | Wu M., Ma B., Pan T., Chen S., Sun J., Adv. Funct. Mater.,2016,26(4), 569—576 |
95 | Zhou H., Wang H., Niu H., Gestos A., Lin T., Adv. Funct. Mater.,2013,23(13), 1664—1670 |
96 | Chen S., Li X., Li Y., Sun J., ACS Nano,2015,9(4), 4070—4076 |
97 | Qiang S., Chen K., Yin Y., Wang C., Mater. Design,2017,116, 395—402 |
98 | Pradel K. C., Wu W., Ding Y., Wang Z. L., Nano Lett.,2014,14(12), 6897—6905 |
99 | Honda W., Harada S., Arie T., Akita S., Takei K., Adv. Funct. Mater.,2014,24(22), 3299—3304 |
100 | Zhang Z., Chen X., Chen P., Guan G., Qiu L., Lin H., Yang Z., Bai W., Luo Y., Peng H., Adv. Mater.,2014,26(3), 466—470 |
101 | Inui T., Koga H., Nogi M., Komoda N., Suganuma K., Adv. Mater.,2015,27(6), 1112—1116 |
102 | Castano L. M., Flatau A. B., Smart Mater. Struct.,2014,23(5), 053001 |
103 | Cheng H., Hu C., Zhao Y., Qu L., NPG Asia Materials,2014,6(7), e113 |
104 | Lilja J., Salonen P., Electron. Lett,2011,47(10), 602—604 |
105 | Stoppa M., Chiolerio A., Sensors,2014,14(7), 11957—11992 |
106 | Maccioni M., Orgiu E., Cosseddu P., Locci S., Bonfiglio A., Appl. Phys. Lett.,2006,89(14), 143515 |
107 | Xue C. H., Chen J., Yin W., Jia S. T., Ma J. Z., Appl. Surf. Sci.,2012,258(7), 2468—2472 |
108 | Cochrane C., Koncar V., Lewandowski M., Dufour C., Sensors,2007,7(4), 473—492 |
109 | Lee H., Kim H., Cho M. S., Choi J., Lee Y., Electrochim. Acta,2011,56(22), 7460—7466 |
110 | Yang Y., Huang Q., Niu L., Wang D., Yan C., She Y., Zheng Z., Adv. Mater.,2017,29(19), 1606679 |
111 | Coclite A. M., Howden R. M., Borrelli D. C., Petruczok C. D., Yang R., Yagüe J. L., Ugur A., Chen N., Lee S., Jo W. J., Liu A., Wang X., Gleason K. K., Adv. Mater.,2013,25(38), 5392—5423 |
112 | Wu X., Han Y., Zhang X., Lu C., ACS Appl. Mater. Interfaces,2016,8(15), 9936—9945 |
113 | Jeon J. W., Cho S. Y., Jeong Y. J., Shin D. S., Kim N. R., Yun Y. S., Kim H. T., Choi S. B., Hong W. G., Kim H. J., Jin H. J., Kim B. H., Adv. Mater.,2017,29(6), 1605479 |
114 | Soto D., Ugur A., Farnham T. A., Gleason K. K., Varanasi K. K., Adv. Funct. Mater.,2018,28(33), 1707355 |
115 | Gao J., Wang L., Guo Z., Li B., Wang H., Luo J., Huang X., Xue H., Chem. Eng. J.,2020,381, 122778 |
116 | Wang P., Wei W., Li Z., Duan W., Han H., Xie Q., J. Mater. Chem. A,2020,8(6), 3509—3516 |
117 | Li X., Li Y., Guan T., Xu F., Sun J., ACS Appl. Mater. Interfaces,2018,10(14), 12042—12050 |
118 | Choi B., Lee J., Han H., Woo J., Park K., Seo J., Lee T., ACS Appl. Mater. Interfaces,2018,10(42), 36094—36101 |
119 | Qiang S., Carey T., Arbab A., Song W., Wang C., Torrisi F., Nanoscale,2019,11(20), 9912—9919 |
120 | Xiong J., Lin M. F., Wang J., Gaw S. L., Parida K., Lee P. S., Adv. Energy Mater.,2017,7(21), 1701243 |
121 | Pakdel E., Wang J., Kashi S., Sun L., Wang X., Adv. Colloid Interface Sci.,2020,277, 102116 |
122 | Zou L., Zhang S., Li X., Lan C., Qiu Y., Ma Y., Adv. Mater. Interfaces,2016,3(5), 1500476 |
123 | Lin Z. I., Lou C. W., Pan Y. J., Hsieh C. T., Huang C. H., Huang C. L., Chen Y. S., Lin J. H., Compos. Sci. Technol.,2017,141, 74—82 |
124 | Shen B., Li Y., Yi D., Zhai W., Wei X., Zheng W., Carbon,2017,113, 55—62 |
125 | Yuan Y., Yin W., Yang M., Xu F., Zhao X., Li J., Peng Q., He X., Du S., Li Y., Carbon,2018,130, 59—68 |
126 | Wang Q. W., Zhang H. B., Liu J., Zhao S., Xie X., Liu L., Yang R., Koratkar N., Yu Z. Z., Adv. Funct. Mater.,2019,29(7), 1806819 |
127 | Gorgutsa S., Bachus K., LaRochelle S., Oleschuk R. D., Messaddeq Y., Smart Mater. Struct.,2016,25(11), 115027 |
128 | Jia L. C., Zhang G., Xu L., Sun W. J., Zhong G. J., Lei J., Yan D. X., Li Z. M., ACS Appl. Mater. Interfaces,2019,11(1), 1680—1688 |
129 | Ghosh S., Nitin B., Remanan S., Bhattacharjee Y., Ghorai A., Dey T., Das T. K., Das N. C., ACS Appl. Mater. Interfaces,2020,12(15), 17988—18001 |
130 | Li S., Huang J., Chen Z., Chen G., Lai Y., J. Mater. Chem. A,2017,5(1), 31—55 |
131 | Huang C. Y., Lai M. F., Liu W. L., Wei Z. H., Adv. Funct. Mater.,2015,25(18), 2670—2676 |
132 | Drotlef D. M., Blumler P., Papadopoulos P., Del Campo A., ACS Appl. Mater. Interfaces,2014,6(11), 8702—8707 |
133 | Kakade B., Mehta R., Durge A., Kulkarni S., Pillai V., Nano Lett.,2008,8(9), 2693—2696 |
134 | Zhu Y. Q., Shi J. F., Huang Q. Z., Wang L. L., Xu G., Chem. Commun.,2017,53(15), 2363—2366 |
135 | Sarwate P., Chakraborty A., Garg V., Luo C., J. Micromech. Microeng.,2014,24(11), 115006 |
136 | Lu Y., Sarshar M. A., Du K., Chou T., Choi C. H., Sukhishvili S. A., ACS Appl. Mater. Interfaces,2013,5(23), 12617—12623 |
137 | Su X., Li H., Lai X., Zhang L., Liao X., Wang J., Chen Z., He J., Zeng X., ACS Appl. Mater. Interfaces,2018,10(4), 4213—4221 |
138 | Wang H., Zhou H., Wei X., Niu H., Lin T., Adv. Mater. Interfaces,2018,5(19), 1800815 |
139 | Zhu T., Wu J., Zhao N., Cai C., Qian Z., Si F., Luo H., Guo J., Lai X., Shao L., Xu J., Adv. Healthc. Mater.,2018,7(7), e1701086 |
140 | Deng S., Huang J., Chen Z., Lai Y., Adv. Mater. Interfaces,2017,4(13), 1700268 |
141 | Jin C., Yan R., Huang J., J. Mater. Chem.,2011,21(43), 17519—17525 |
142 | Kong Y. Y., Xin J. H., Adv. Eng. Mater.,2018,20(8), 1700905 |
143 | Jia J., Chen K. L., Zeng T. C., Yao D. G., Wang C. X., Ind. Eng. Chem. Res.,2020,59(7), 2899—2907 |
144 | Yan T., Chen X., Zhang T., Yu J., Jiang X., Hu W., Jiao F., Chem. Eng. J.,2018,347, 52—63 |
145 | Dang Z., Liu L., Li Y., Xiang Y., Guo G., ACS Appl. Mater. Interfaces,2016,8(45), 31281—31288 |
[1] | 王茹涵, 贾顺涵, 吴丽敏, 孙晓甫, 韩布兴. CO2参与电化学构筑C—N键制备重要化学品[J]. 高等学校化学学报, 2022, 43(7): 20220395. |
[2] | 金湘元, 张礼兵, 孙晓甫, 韩布兴. 单原子催化剂在电催化还原CO2领域的应用[J]. 高等学校化学学报, 2022, 43(5): 20220035. |
[3] | 王瑞洁, 焦小雨, 潘宇, 王训春, 杨洋, 成中军. 透明抗静电多功能超疏水薄膜的制备[J]. 高等学校化学学报, 2022, 43(3): 20210703. |
[4] | 王方圆, 张奋娴, 李毅, 高建华, 牛颜冰, 申少斐. 仿生树叶模型的制作及在琼脂糖微流控芯片中的应用[J]. 高等学校化学学报, 2022, 43(11): 20220445. |
[5] | 袁萌, 赵英杰, 吴雨辰, 江雷. 钙钛矿阵列化组装及其多功能探测器的应用[J]. 高等学校化学学报, 2022, 43(11): 20220448. |
[6] | 左怀龙, 雷思敏, 张锐, 李玉新, 陈伟. 新型异喹啉衍生物的设计合成及抑菌活性[J]. 高等学校化学学报, 2021, 42(9): 2766. |
[7] | 王昱芃, 赵洋, 李茉涵, 史素青, 宫永宽. 多巴胺基多重相互作用协同构筑抗污-杀菌双重功能涂层[J]. 高等学校化学学报, 2021, 42(3): 811. |
[8] | 董其政, 翟锦. 基于二维材料的仿生纳流体通道在能量转化中的应用[J]. 高等学校化学学报, 2021, 42(2): 432. |
[9] | 潘菁, 徐敏敏, 袁亚仙, 姚建林. 基于表面增强拉曼光谱快速检测纺织品禁用染料[J]. 高等学校化学学报, 2021, 42(12): 3716. |
[10] | 安越, 黄汉雄. 注压成型仿生纳米结构聚丙烯表面的冷凝微水滴动态行为[J]. 高等学校化学学报, 2020, 41(8): 1888. |
[11] | 沙心易, 张常旭, 汪羽翎, 周永丰. 基于儿茶酚交替共聚物的干湿态双高效胶黏剂材料[J]. 高等学校化学学报, 2020, 41(7): 1477. |
[12] | 严磊, 毛秀海, 左小磊. 框架核酸辅助的仿生膜构建[J]. 高等学校化学学报, 2020, 41(7): 1415. |
[13] | 高乃伟, 马强, 贺泳霖, 王亚培. 基于离子液体的绿色电子器件[J]. 高等学校化学学报, 2020, 41(5): 901. |
[14] | 林玉才, 裴文乐, 孙若璇, 高春雷, 陈基棚, 郑咏梅. 特殊浸润性表面的液滴凝结[J]. 高等学校化学学报, 2019, 40(6): 1236. |
[15] | 吴蓉, 王慧敏, 曹君, 陈璐瑶, 苏二正. 深共熔溶剂同步提取红景天中红景天苷和酪醇[J]. 高等学校化学学报, 2019, 40(5): 918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||