高等学校化学学报 ›› 2014, Vol. 35 ›› Issue (7): 1515.doi: 10.7503/cjcu20140108

• 物理化学 • 上一篇    下一篇

离子液体和醇胺溶液复配脱硫剂吸收H2S及再生性能

马云倩, 王睿()   

  1. 山东大学环境科学与工程学院, 济南 250100
  • 收稿日期:2014-02-14 出版日期:2014-07-10 发布日期:2014-04-29
  • 作者简介:联系人简介: 王 睿, 男, 博士, 教授, 博士生导师, 主要从事环境污染物治理方面的研究. E-mail: ree_wong@hotmail.com
  • 基金资助:
    国家自然科学基金(批准号: 21276144)、 教育部科技重点项目(批准号: 109094)及博士点基金优先发展领域课题(批准号: 20110131130001)资助

H2S Absorption Capacity of Ionic Liquid-MDEA-H2O Combined Desulfurizers

MA Yunqian, WANG Rui*()   

  1. School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
  • Received:2014-02-14 Online:2014-07-10 Published:2014-04-29
  • Contact: WANG Rui E-mail:ree_wong@hotmail.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.21276144), the Scientific Key Project from Chinese Ministry of Education, China(No.109094) and the PhD Program Project for Priority Development Field from Chinese Ministry of Education, China(No.20110131130001)

摘要:

将5种离子液体[Bmim]HCO3, [TMG]L, [MEA]L, [Bmim]Cl和[Bmim]BF4分别与N-甲基二乙醇胺(MDEA)水溶液混合, 得到新型复配脱硫剂, 考察了离子液体的消泡性能和复配脱硫剂在不同离子液体、 吸收温度以及复配比例下的脱硫性能, 并且对较优脱硫剂进行了再生性能的研究. 采用离子色谱仪对经臭氧深度处理的再生液进行了SO42-离子浓度测试, 并对脱硫剂进行了密度泛函理论研究, 从而进一步分析了吸收机理. 结果表明, 室温下复配脱硫剂脱硫能力大小顺序为[Bmim]Cl-MDEA-H2O>[Bmim]HCO3-MDEA-H2O>[Bmim]BF4-MDEA-H2O>MDEA-H2O>[TMG]L-MDEA-H2O>[MEA]L-MDEA-H2O. 离子液体与MDEA结合的稳定性为主要影响因素, [Bmim]HCO3的消泡能力最强, [Bmim]Cl-MDEA-H2O, [Bmim]BF4-MDEA-H2O和[Bmim]HCO3-MDEA-H2O脱硫剂可以通入空气获得基本再生, H2S与离子液体的结合越稳定, 脱硫效率越高, 但脱硫剂的再生程度会降低.

关键词: 硫化氢, 离子液体, N-甲基二乙醇胺, 脱硫剂, 密度泛函理论

Abstract:

Three kinds of functionalized ionic liquids [Bmim]HCO3, [TMG]L and [MEA]L were synthesized. The structure and thermostability of the synthetic ionic liquids(ILs) were confirmed by FTIR spectrum and thermogravimetry characterization, respectively. The new combined desulfurizers were prepared by mixing ionic liquid([Bmim]HCO3, [TMG]L, [MEA]L, [Bmim]Cl or [Bmim]BF4) with methyldiethanolamine(MDEA) aqueous solution according to certain proportion. Under conditions of different ionic liquids, absorption temperature and desulfurizer composition, H2S absorption and bubble eliminating capacity of the desulfurizer were measured, and regeneration performance of the favorable desulfurizer was studied. The concentration of SO42- in regenerated desulfurizer was analyzed by ion chromatography after deep oxidation by O3, and the mechanism of absorption was analyzed based on the calculations from density functional theory. The results show that absorption capacity is in the sequence of [Bmim]Cl-MDEA-H2O>[Bmim]HCO3-MDEA-H2O>[Bmim]BF4-MDEA-H2O>MDEA-H2O>[TMG]L-MDEA-H2O>[MEA]L-MDEA-H2O, and the major factor is attributed to the stability of IL-MDEA; [Bmim]HCO3 performs the best capacity of bubble elimination; [Bmim]Cl-MDEA-H2O, [Bmim]HCO3-MDEA-H2O and [Bmim]BF4-MDEA-H2O can be nearly completely regenerated by air, and high stability of IL-H2S leads to higher absorption efficiency, but smaller extent of regeneration.

Key words: H2S, Ionic liquid, Methyldiethanolamine(MDEA), Desulfurizer, Density functional theory

中图分类号: 

TrendMD: