Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (1): 20220512.doi: 10.7503/cjcu20220512
• Review • Previous Articles Next Articles
LIU Shuanghong1, XIA Siyu1, LIU Shiqi1, LI Min1, SUN Jiajie2, ZHONG Yong1(), ZHANG Feng3(
), BAI Feng1(
)
Received:
2022-08-02
Online:
2023-01-10
Published:
2022-09-06
Contact:
ZHONG Yong, ZHANG Feng, BAI Feng
E-mail:yzhong@henu.edu.cn;hbzhangfeng1977@163.com;10330010@henu.edu.cn
Supported by:
CLC Number:
TrendMD:
LIU Shuanghong, XIA Siyu, LIU Shiqi, LI Min, SUN Jiajie, ZHONG Yong, ZHANG Feng, BAI Feng. Current Advances of Hollow All-solid-state Z-Scheme Photocatalysts[J]. Chem. J. Chinese Universities, 2023, 44(1): 20220512.
Photocatalyst | Strategy | Application | Electron transfer pathway | Ref. |
---|---|---|---|---|
g⁃C3N4/Au/C⁃TiO2 | Hard template⁃carbon colloidal spheres | H2 production(129.0 μmol·h-1·g-1) | Indirect Z⁃scheme | [ |
SrTiO3:La/Rh/GR/BiVO4 | Hard template⁃carbon colloidal spheres | H2 production(462 μmol·h-1·g-1) O2 production(223 μmol·h-1·g-1) | Indirect Z⁃scheme | [ |
Cu2O@CuCo2O4 | Self⁃template | Oxidation of chlorote⁃tracycline(CTC) and reduction of nitrobenzene(NB) | Direct Z⁃scheme | [ |
MoSe2/CdSe | Template⁃free⁃Kirkendall effect | H2 production(7120.0 μmol·h-1·g-1) O2 production(348.0 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
InVO4/CeVO4 | Template⁃free⁃Kirkendall effect | Degradation of TC | Direct Z⁃scheme | [ |
In2O3@ZnFe2O4 | Hard template⁃In⁃MIL⁃68 | Degradation of TC | Direct Z⁃scheme | [ |
Co3O4@CoFe2O4 | Hard template⁃ZIF⁃67 | Reduction of CO2, CH4 2.06 μmol·h-1·g-1 CO 72.2 μmol·h-1·g-1 | Direct Z⁃scheme | [ |
CuInS2@C3N4 | Hard template⁃SiO2 spheres | H2 production(373 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
SnS2/SnS | Hard template⁃MnCO3 microboxes | Degradation of cyanide, Reduction of Cr(Ⅵ) | Direct Z⁃scheme | [ |
g⁃C3N4@a⁃Fe2O3/Co⁃Pi | Hard template⁃SiO2 spheres | H2 production(450 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
In2O3⁃Bi2O3 | Hard template⁃InBi⁃MOFs | H2 production(22.73 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
CuCo2S4/3B⁃TiO2 | Template free⁃ion exchange | Reduction of CO2, CH4 4.22 μmol·h-1·g-1 CO 2.55 μmol·h-1·g-1 | Direct Z⁃scheme | [ |
CdS/Co1-xS | Hard template⁃ZIF⁃67 | H2 production(13.48 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
Co9S8/CdS | Hard template⁃ZIF⁃67 | H2 production(15.0 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
ZnIn2S4@K3PW12O40/ZnIn2S4/Ag2S | Template free⁃ion exchange | Degradation of TC, H2 production (2107.3 μmol·h-1·g-1) | Dual Z⁃scheme | [ |
In2O3/TiO2/Cu2O | Hard template⁃In⁃MIL⁃68 | Degradation of TC | Type⁃II⁃Z⁃scheme | [ |
MoSe2@Bi2S3/CdS | Soft template⁃PEG | Degradation of TCP/Cr(Ⅵ), H2 production(11.84 mmol·h-1·g-1) | Dual Z⁃scheme | [ |
Table 1 Applications of hollow all-solid-state Z-scheme photocatalysts
Photocatalyst | Strategy | Application | Electron transfer pathway | Ref. |
---|---|---|---|---|
g⁃C3N4/Au/C⁃TiO2 | Hard template⁃carbon colloidal spheres | H2 production(129.0 μmol·h-1·g-1) | Indirect Z⁃scheme | [ |
SrTiO3:La/Rh/GR/BiVO4 | Hard template⁃carbon colloidal spheres | H2 production(462 μmol·h-1·g-1) O2 production(223 μmol·h-1·g-1) | Indirect Z⁃scheme | [ |
Cu2O@CuCo2O4 | Self⁃template | Oxidation of chlorote⁃tracycline(CTC) and reduction of nitrobenzene(NB) | Direct Z⁃scheme | [ |
MoSe2/CdSe | Template⁃free⁃Kirkendall effect | H2 production(7120.0 μmol·h-1·g-1) O2 production(348.0 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
InVO4/CeVO4 | Template⁃free⁃Kirkendall effect | Degradation of TC | Direct Z⁃scheme | [ |
In2O3@ZnFe2O4 | Hard template⁃In⁃MIL⁃68 | Degradation of TC | Direct Z⁃scheme | [ |
Co3O4@CoFe2O4 | Hard template⁃ZIF⁃67 | Reduction of CO2, CH4 2.06 μmol·h-1·g-1 CO 72.2 μmol·h-1·g-1 | Direct Z⁃scheme | [ |
CuInS2@C3N4 | Hard template⁃SiO2 spheres | H2 production(373 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
SnS2/SnS | Hard template⁃MnCO3 microboxes | Degradation of cyanide, Reduction of Cr(Ⅵ) | Direct Z⁃scheme | [ |
g⁃C3N4@a⁃Fe2O3/Co⁃Pi | Hard template⁃SiO2 spheres | H2 production(450 μmol·h-1·g-1) | Direct Z⁃scheme | [ |
In2O3⁃Bi2O3 | Hard template⁃InBi⁃MOFs | H2 production(22.73 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
CuCo2S4/3B⁃TiO2 | Template free⁃ion exchange | Reduction of CO2, CH4 4.22 μmol·h-1·g-1 CO 2.55 μmol·h-1·g-1 | Direct Z⁃scheme | [ |
CdS/Co1-xS | Hard template⁃ZIF⁃67 | H2 production(13.48 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
Co9S8/CdS | Hard template⁃ZIF⁃67 | H2 production(15.0 mmol·h-1·g-1) | Direct Z⁃scheme | [ |
ZnIn2S4@K3PW12O40/ZnIn2S4/Ag2S | Template free⁃ion exchange | Degradation of TC, H2 production (2107.3 μmol·h-1·g-1) | Dual Z⁃scheme | [ |
In2O3/TiO2/Cu2O | Hard template⁃In⁃MIL⁃68 | Degradation of TC | Type⁃II⁃Z⁃scheme | [ |
MoSe2@Bi2S3/CdS | Soft template⁃PEG | Degradation of TCP/Cr(Ⅵ), H2 production(11.84 mmol·h-1·g-1) | Dual Z⁃scheme | [ |
1 | Zhong Y., Liu S., Wang J., Zhang W., Tian T., Sun J., Bai F., APL Mater., 2020, 8(12), 120706 |
2 | Ni L., Xu G. J., Li C. C., Cui G. L., Exploration, 2022, 2(2), 20210239 |
3 | Wang L., Fan H. Y., Bai F., MRS Bull., 2020, 45(1), 49—56 |
4 | Li Q., Bao Y., Bai F., MRS Bull., 2020, 45(7), 569—573 |
5 | Song Y. J., Ji K. Y., Duan H. H., Shao M. F., Exploration, 2021, 1(3), 20210050 |
6 | Zhang N., Wang L., Wang H. M., Cao R. H., Wang J. F., Bai F., Fan H. Y., Nano Lett., 2018, 18(1), 560—566 |
7 | Wang J. F., Zhong Y., Wang L., Zhang N., Cao R. H., Bian K. F., Alarid L., Haddad R. E., Bai F., Fan H. Y., Nano Lett., 2016, 16(10), 6523—6528 |
8 | Tian S. F., Chen S. D., Ren X. T., Cao R. H., Hu H. Y., Bai F., Nano Res., 2019, 12(12), 3109—3115 |
9 | Tian S. F., Chen S. D., Ren X. T., Hu Y. Q., Hu H. Y., Sun J. J., Bai F., Nano Res., 2020, 13(10), 2665—2672 |
10 | Fujishima A., Honda K., Nature, 1972, 238(5358), 37—38 |
11 | Wang Z. L., Hisatomi T., Li R. G., Sayama K., Liu G., Domen K., Li C., Wang L. Z., Joule, 2021, 5(2), 344—359 |
12 | Fu C. F., Wu X. J., Yang J. L., Adv. Mater., 2018, 30(48), 1802106 |
13 | Wang W. K., Gao M., Zhang X., Fujitsuka M., Majima T., Yu H. Q., Appl. Catal. B, 2017, 205, 165—172 |
14 | Xiong H. L., Wu L. L., Liu Y., Gao T. N., Li K. Q. O., Long Y., Zhang R., Zhang L., Qiao Z. A., Huo Q. S., Ge X., Song S. Y., Zhang H. J., Adv. Energy Mater., 2019, 9(31), 1901634 |
15 | Yu J. G., Yu Y. F., Zhou P., Xiao W., Cheng B., Appl. Catal. B, 2014, 156, 184—191 |
16 | Ismael M., Wu Y., Wark M., New J. Chem., 2019, 43(11), 4455—4462 |
17 | Wang S. B., Zhang X. W., Li S., Fang Y., Pan L., Zou J. J., J. Hazard. Mater., 2017, 331, 235—245 |
18 | Hao Q., Liu Y., Chen T., Guo Q., Wei W., Ni B., ACS Appl. Nano Mater., 2019 , 2, 2308—2316 |
19 | Lin R., Wan J., Xiong Y., Wu K. L., Cheong W. C., Zhou G., Wang D. S., Peng Q., Chen C., Li Y. D., J. Am. Chem. Soc., 2018, 140(29), 9078—9082 |
20 | Dong P. Y., Hou G. H., Xi X. U., Shao R., Dong F., Environ. Sci. Nano, 2017, 4(3), 539—557 |
21 | Ren L. P., Zhou W., Sun B. J., Li H. Z., Qiao P. Z., Xu Y. C., Wu J. X., Lin K., Fu H. G., Appl. Catal. B, 2019, 240, 319—328 |
22 | Sun B. J., Zhou W., Li H. Z., Ren L. P., Qiao P. Z., Xiao F., Wang L., Jiang B. J., Fu H. G., Appl. Catal. B, 2018, 221, 235—242 |
23 | Zhang S., Yi J. J., Chen J. R., Yin Z. L., Tang T., Wei W. X., Cao S. S., Xu H., Chem. Eng. J., 2020, 380, 122583 |
24 | Chen S., Huang D. L., Xu P., Gong X. M., Xue W. J., Lei L., Deng R., Li J., Li Z. H., ACS Catal., 2020, 10(2), 1024—1059 |
25 | Bai S., Jiang J., Zhang Q., Xiong Y. J., Chem. Soc. Rev., 2015, 44(10), 2893—2939 |
26 | Bai S., Jiang W. Y., Li Z. Q., Xiong Y. J., ChemNanoMat, 2015, 1(4), 223—239 |
27 | Yang M., Zhang C. H., Li N. W., Luan D. Y., Yu L., Lou X. W., Adv. Sci., 2022, 9(9), 2105135 |
28 | Wang S. B., Wang Y., Zang S. Q., Lou X. W., Small Methods, 2019, 4(1), 1900586 |
29 | Jiang K. Y., Dai X. C., Yu Y., Mo Q. L., Xiao F. X., J. Phys. Chem. C, 2018, 122(23), 12291—12306 |
30 | Yu W. L., Chen J. X., Shang T. T., Chen L. F., Gu L., Peng T. Y., Appl. Catal. B, 2017, 219, 693—704 |
31 | Ma G. J., Chen S. S., Kuang Y. B., Akiyama S., Hisatomi T., Nakabayashi M., Shibata N., Katayama M., Minegishi T., Domen K., J. Phys. Chem. Lett., 2016, 7(19), 3892—3896 |
32 | Liang Z. Y., Wei J. X., Wang X., Yu Y., Xiao F. X., J. Mater. Chem. A, 2017, 5(30), 15601—15612 |
33 | Xu Q. L., Zhang L. Y., Cheng B., Fan J. J., Yu J. G., Chem, 2020, 6(7), 1543—1559 |
34 | Pan J. Q., Wang P. H., Wang P. P., Yu Q., Wang J. J., Song C. S., Zheng Y. Y., Li C. R., Chem. Eng. J., 2021, 405, 126622 |
35 | Qin Y. Y., Li H., Lu J., Meng F. Y., Ma C. C., Yan Y. S., Meng M. J., Chem. Eng. J., 2020, 384, 123275 |
36 | Hu J. Q., Zhang F., Yang Y., Han Q. T., Li Z. S., Shen Q., Zhang Y. C., Zhou Y., Zou Z. G., Catal. Sci. Technol., 2020, 10(12), 3843—3847 |
37 | Li H. L., Chen Y. J., Li L., Liu H., Jiang H. Y., Du L. Z., Tian G. H., ChemCatChem, 2020, 12(12), 3223—3229 |
38 | Zhong M., Ma Y. H., Oleynikov P., Domen K., Delaunay J. J., Energy Environ. Sci., 2014 , 7(5), 1693—1699 |
39 | Xiao M., Wang Z. L., Lyu M. Q., Luo B., Wang S. C., Liu G., Cheng H. M., Wang L. Z., Adv. Mater., 2019, 31(38), 1801369 |
40 | Zuo G. C., Wang Y. T., Teo W. L., Xian Q. M., Zhao Y. L., Appl. Catal. B, 2021, 291, 120126 |
41 | Chen X. J., Wang J., Chai Y. Q., Zhang Z. J., Zhu Y. F., Adv. Mater., 2021, 33(7), 2007479 |
42 | She X. J., Wu J. J., Xu H., Zhong J., Wang Y., Song Y. H., Nie K. Q., Liu Y., Yang Y. C., Rodrigues M. T. F., Vajtai R., Lou J., Du D. L., Li H. M., Ajayan P. M., Adv. Energy Mater., 2017, 7(17), 1700025 |
43 | Ma Y. Y., Jiang X., Sun R. X., Yang J. L., Jiang X. L., Liu Z. Q., Xie M. Z., Xie E. Q., Han W. H., Chem. Eng. J., 2020, 382, 123020 |
44 | Du X., Zhao T. Y., Xiu Z. Y., Xing Z. P., Li Z. Z., Pan K., Yang S. L., Zhou W., Appl. Mater. Today, 2020, 20, 100719 |
45 | Zhao D. M., Wang Y. Q., Dong C. L., Huang Y. C., Chen J., Xue F., Shen S. H., Guo L. J., Nat. Energy, 2021, 6(4), 388—397 |
46 | Zhang P., Lou X. W., Adv. Mater., 2019, 31(29), 1900281 |
47 | Gao L., Chen Z., Zheng H., Hu J., Mater. Today Chem., 2022, 24, 100800 |
48 | Wei S. H., Chang S. F., Qian J., Xu X. X., Small, 2021, 17(11), 2100084 |
49 | Dong S. Y., Cui L. F., Zhang W., Xia L. J., Zhou S. J., Russell C. K., Fan M. H., Feng J. L., Sun J. H., Chem. Eng. J., 2020, 384, 123279 |
50 | Pan J. Q., Wang P. H., Chen Z. F., Yu Q., Wang P. P., Zhu M., Zhao W. J., Wang J. J., Zheng Y. Y., Li C. R., Mater. Today Chem., 2021, 21, 100528 |
51 | Lai X. Y., Halpert J. E., Wang D., Energy Environ. Sci., 2012, 5(2), 5604—5618 |
52 | Yu L., Yu X. Y., Lou X. W., Adv. Mater., 2018, 30(38), 1800939 |
53 | Nguyen C. C., Vu N. N., Do T. O., J. Mater. Chem. A, 2015, 3(36), 18345—18359 |
54 | Wang J. L., Wang X. Q., Chen Q. H., Xu H. L., Dai M., Zhang M., Wang W. Y., Song H., Appl. Surf. Sci., 2021, 535, 147641 |
55 | Ma X. Z., Wang X. Y., Yu C. L., Song Y., Liang J., Min Q. W., Zhang F., J. Alloys Compd., 2019, 773, 352—360 |
56 | Xu Y., Wen W., Tang M. Z., Wu J. M., Mater. Chem. Front., 2017, 1(7), 1453—1458 |
57 | Wang F., Sun L. M., Li Y. A., Zhan W. W., Wang X. J., Han X. G., Inorg. Chem., 2018, 57(8), 4550—4555 |
58 | Gao L. J., Li Y. G., Ren J. B., Wang S. F., Wang R. N., Fu G. S., Hu Y., Appl. Catal., B, 2017, 202, 127—133 |
59 | Wang S. B., Zhang X. W., Li S., Fang Y., Pan L., Zou J. J., J. Hazard. Mater., 2017, 331, 235—245 |
60 | Zhang P., Wang S., Guan B. Y., Lou X. W., Energy Environ. Sci., 2019, 12(1), 164—168 |
61 | Zhang L., Niu C. G., Wen X. J., Guo H., Zhao X. F., Huang D. W., Zeng G. M., J. Colloid Interface Sci., 2018, 514, 396—406 |
62 | Chen L., Zhao X., Duan X. G., Zhang J. Q., Ao Z. M., Li P., Wang S. J., Wang Y. X., Cheng S., Zhao H. F., He F. T., Dong P., Zhao C. C., Wang S. B., Sun H. Q., ACS Sustainable Chem. Eng., 2020, 8(38), 14386—14396 |
63 | He F., Wang M., Luo L., Wang Z. X., Peng S. Q., Li Y. X., Appl. Surf. Sci., 2021, 562, 150103 |
64 | Li Y., Zhang D. N., Fan J. J., Xiang Q. J., Chin. J. Catal., 2021, 42(4), 627—636 |
65 | Li H. L., Bao X. L., Wang Z. Y., Zheng Z. K., Wang P., Liu Y. Y., Zhang X. Y., Qin X. Y., Dai Y., Li Y. J., Zou H. L., Huang B. B., Int. J. Hydrogen Energy, 2019, 44(54), 28780—28788 |
66 | Sun Z. Z., Wang W., Chen Q. W., Pu Y. Y., He H., Zhuang W. M., He J. Q., Huang L. M., J. Mater. Chem. A, 2020, 8(6), 3160—3167 |
67 | Zou Y. Y., Guo C. Y., Cao X. L., Zhang L. G., Chen T. X., Guo C., Wang J. D., J. Environ. Chem. Eng., 2021, 9(6), 106270 |
68 | Fei W. H., Song Y., Li N. J., Chen D. Y., Xu Q. F., Li H., He J. H., Lu J. M., Environ. Sci. Nano, 2019, 6(10), 3123—3132 |
69 | Long D., Li X. Y., Yin Z. F., Fan S. Y., Wang P. L., Xu F. Q., Wei L. H., Tadé M. O., Liu S. M., J. Alloy. Compd., 2021, 854, 156942 |
70 | Dong Y. L., Li G., Xu D. Y., Wang Q. W., Yang T. S., Pang S. X., Zhang G. M., Lv L. Y., Xia Y. G., Ren Z. J., Wang P. F., Chem. Eng. J., 2022, 446, 136705 |
71 | Xia C., Xue C. Y., Bian W. X., Liu J., Wang J. J., Wei Y. J., Zhang J. B., ACS Appl. Nano Mater., 2021, 4(3), 2743—2751 |
72 | Xie Q. Y., Zhou H., Lv Z. L., Liu H., Guo H., J. Mater. Chem. A, 2017, 5(13), 6299—6309 |
73 | Yang J., Jing J. F., Zhu Y. F., Adv. Mater., 2021, 33(31), 2101026 |
74 | Wang Y., Zhao J. X., Chen Z., Zhang F., Guo W., Lin H. M., Qu F. Y., Appl. Catal. B, 2019, 244, 76—86 |
75 | Wang M., Tan G. Q., Wang Y., Zhang B. X., Ren H. J., Lv L., Feng S. J., Dang M. Y., J. Alloy. Compd., 2022, 891, 161928 |
76 | Wang K., Xing Z. P., Du M., Zhang S. Y., Li Z. Z., Pan K., Zhou W., Appl. Catal. B, 2021, 281, 119482 |
77 | Wu C. X., Xing Z. P., Fang B., Cui Y. Q., Li Z. Z., Zhou W., J. Mater. Chem. A, 2022, 10, 180—191 |
78 | Hasanvandian F., Shokri A., Moradi M., Kakavandi B., Setayesh S. R., J. Hazard. Mater., 2022, 423, 127090 |
79 | Qiu Y. L., Xing Z. P., Guo M. J., Li Z. Z., Wang N., Zhou W., Appl. Catal. B, 2021, 298, 120628 |
80 | Huo H. L., Liu D., Feng H., Tian Z. H., Liu X., Li A., Nanoscale, 2020, 12(26), 13912—13917 |
81 | Zhang Q. S., Li Y. M., Ren H., Zhai Q. C., Zhang C. L., Cheng L., Chem. Eng. J., 2021, 408, 127267 |
82 | Chen Z. M., Wang J. G., Zhai G. J., An W., Men Y., Appl. Catal. B, 2017, 218, 825—832 |
83 | Sun H., He Q. R., She P., Zeng S., Xu K. L., Li J. Y., Liang S., Liu Z. N., J. Colloid Interface Sci., 2017, 505, 884—891 |
84 | Hasanvandian F., Salmasi M. Z., Moradi M., Saei S. F., Kakavandi B., Setayesh S. R., Chem. Eng. J., 2022, 444, 136493 |
85 | Duan Y. L., Xue J. Q., Dai J. A., Wei Y. R., Wu C., Chang S. H., Ma J., Appl. Surf. Sci., 2022, 592, 153306 |
86 | Li C. Q., Du X., Jiang S., Liu Y., Niu Z. L., Liu Z. Y., Yi S. S., Yue X. Z., Adv. Sci., 2022,2201773 |
87 | Li L., Guo C. F., Shen J. L., Ning J. Q., Zhong Y. J., Hu Y., Chem. Eng. J., 2020, 400, 125925 |
88 | Liu L. Q., Zhang X. N., Yang L. F., Ren L. T., Wang D. F., Ye J. H., Natl. Sci. Rev., 2017, 4(5), 761—780 |
89 | Zhao W., Dong Q., Sun C., Xia D. H., Huang H. B., Yang G., Wang G. X., Leung D. Y. C., Chem. Eng. J., 2021, 409, 128185 |
90 | Ma D. D., Shi J. W., Sun D. K., Zou Y. J., Cheng L. H., He C., Wang H. K., Niu C. M., Wang L. Z., Appl. Catal. B, 2019, 244, 748—757 |
91 | Zou Y. J., Shi J. W., Ma D. D., Fan Z. Y., Niu C. M., Wang L. Z., ChemCatChem, 2017, 9(19), 3752—3761 |
92 | Saha M., Ghosh S., De S. K., Catal. Today, 2020, 340, 253—267 |
93 | Akple M. S., Chimmikuttanda S. P., J. Nanopart. Res., 2018, 20(9), 231—247 |
94 | Liang Y., Chen Y. X., Lin L., Zhao M. J., Zhang L., Yan J., Wang Y., Chen H., Zeng J., Zhang Y. S., New J. Chem., 2020, 44(4), 1579—1587 |
95 | Lu Z. Y., Yu Z. H., Dong J. B., Song M. S., Liu Y., Liu X. L., Ma Z. F., Su H., Yan Y. S., Huo P. W., Chem. Eng. J., 2018, 337, 228—241 |
96 | Wu X. H., Zhang Y. Z., Wu H. D., Guo J., Wu K., Zhang L. F., J. Mater. Sci. ⁃Mater. El., 2021, 32(22), 26241—26257 |
97 | Zhang T. X., Meng F. L., Cheng Y., Dewangan N., Ho G. W., Kawi S., Appl. Catal. B, 2021, 286, 119853 |
98 | Li N., Gao H., Wang X., Zhao S. J., Lv D., Yang G. Q., Gao X. Y., Fan H. K., Gao Y. Q., Ge L., Chin. J. Catal., 2020, 41(3), 426—434 |
99 | Xu X. M., Meng L. J., Dai Y. X., Zhang M., Sun C., Yang S. G., He H., Wang S. M., Li H., J. Hazard. Mater., 2020, 381, 120953 |
100 | Xu X. M., Meng L. J., Luo J., Zhang M. A., Wang Y. T., Dai Y. X., Sun C., Wang Z. Y., Yang S. G., He H., Wang S. B., Appl. Catal. B, 2021, 293, 120231 |
101 | Wei Y. Z., Wan J. W., Wang J. Y., Zhang X., Yu R. B., Yang N. L., Wang D., Small, 2021, 17(22), 2005345 |
102 | Yang Y., Wu J. J., Xiao T. T., Tang Z., Shen J. Y., Li H. J., Zhou Y., Zou Z. G., Appl. Catal. B, 2019, 255, 117771 |
103 | Zheng J. H., Liu X. Y., Zhang L., Chem. Eng. J., 2020, 389, 124339 |
104 | Ding W. C., Lin X., Ma G. H., Lu Q. F., J. Environ. Chem. Eng., 2020, 8(6), 104588 |
105 | Luo J. H., Lin Z. X., Zhao Y., Jiang S. J., Song S. Q., Chin. J. Catal., 2020, 41(1), 122—130 |
106 | Sun Y., Shao S. M., Wang Y. F., Lu W. J., Zhang P. P., Yao Q. Q., Int. J. Hydrogen Energy, 2020, 45(4), 2840—2851 |
107 | Ji Q. J., Yan X. M., Xu J. X., Wang C., Wang L., Sep. Purif. Technol., 2021, 265, 118487 |
108 | Zhang Y., Zhang G. L., Wang Y. T., Ma Z. H., Yang T. Y., Zhang T. H., Zhang Y. H., J. Colloid Interf. Sci., 2021, 596, 342—351 |
109 | Bai F., Bian K. F., Li B. S., Karler C., Bowman A., Fan H. Y., MRS Bull., 2020, 45(2), 135—141 |
110 | Cao R. H., Wang J. H., Li Y. S., Sun J. J., Bai F., Nano Res., 2022, 15(6), 5719—5725 |
111 | Li Q., Zhao N. N., Bai F., MRS Bull., 2019, 44(3), 172—177 |
112 | Cao R. H., Wang G. Y., Ren X. T., Duan P. C., Wang L., Li Y. S., Chen X., Zhu R., Jia Y., Bai F., Nano Lett., 2022, 22(1), 157—163 |
113 | Liu Y. Q., Wang L., Feng H. X., Ren X. T., Ji J. J., Bai F., Fan H. Y., Nano Lett., 2019, 19(4), 2614—2619 |
[1] | WANG Hui, ZHAO Decai, YANG Nailiang, WANG Dan. Gate Keeper in the Smart Hollow Drug Carrier [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220237. |
[2] | WANG Sijia, HOU Lu, LI Chenglong, LI Wencui, LU Anhui. Recent Advances in Synthesis and Applications of Hollow Nano-carbons [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220637. |
[3] | YANG Qingfeng, LYU Liang, LAI Xiaoyong. Progress on Preparation and Electrocatalytic Application of Hollow MOFs [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220666. |
[4] | SHEN Xinyi, ZHANG Sen, WANG Shutao, SONG Yongyang. Synthesis Strategies for Polymer Hollow Particles [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220627. |
[5] | ZHU Kerun, REN Wenxuan, ZHANG Wei, LI Wei. Salt-templated Synthesis and Morphological Control of Monodisperse Hollow Mesoporous Structures [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220607. |
[6] | WU Yucai, DU Huan, ZHU Jiexin, XU Nuo, ZHOU Liang, MAI Liqiang. Intricate Hollow Structured Materials: Synthesis and Energy Applications [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220689. |
[7] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[8] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[9] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[10] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[11] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[12] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[13] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[14] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[15] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||