Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (7): 20220279.doi: 10.7503/cjcu20220279
• Review • Previous Articles Next Articles
ZHOU Leilei1,2,3, CHENG Haiyang1,3(), ZHAO Fengyu1,2,3()
Received:
2022-04-26
Online:
2022-07-10
Published:
2022-05-24
Contact:
CHENG Haiyang,ZHAO Fengyu
E-mail:hycyl@ciac.ac.cn;zhaofy@ciac.ac.cn
Supported by:
CLC Number:
TrendMD:
ZHOU Leilei, CHENG Haiyang, ZHAO Fengyu. Research Progress of CO2 Hydrogenation over Pd-based Heterogeneous Catalysts[J]. Chem. J. Chinese Universities, 2022, 43(7): 20220279.
Catalyst | pH2/MPa | pCO2/MPa | Additive | T/℃ | Solvent | Time/h | TON a | TOF b /h-1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
PdAg@NMHCS | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 2750 | — | [ |
Pd NPore | 1 | 1 | DBU | 80 | MeCN | 20 | 1985 | — | [ |
PdAg/NH2?MSC | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 839 | 35 | [ |
PdAg/TiO2@ZIF?8 | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 913 | — | [ |
PdNi/CNT?GR | 2 | 2.5 | — | 40 | H2O | 15 | 6.4 | 0.43 | [ |
Pd0.8Co0.2@MSN | 1 | 1 | NaHCO3 | 100 | H2O | 10 | 4082 | 1824 | [ |
PdAg+PEI@HMOS | 1 | 1 | NaOH | 100 | H2O | 22 | 2754 | 125 | [ |
PdAg/NPS | 2 | 2 | — | 40 | H2O | 24 | 204 | 10 | [ |
PdMnx@S?1 | 2 | 2 | NaOH | 80 | H2O | — | — | 2151 | [ |
PdAg@MHCSs | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 2680 | — | [ |
Pd2Cu14@NMHCS | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 1432 | — | [ |
Table 1 Comparison of the different Pd catalysts reported for the hydrogenation of CO2 to formic acid/formates
Catalyst | pH2/MPa | pCO2/MPa | Additive | T/℃ | Solvent | Time/h | TON a | TOF b /h-1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
PdAg@NMHCS | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 2750 | — | [ |
Pd NPore | 1 | 1 | DBU | 80 | MeCN | 20 | 1985 | — | [ |
PdAg/NH2?MSC | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 839 | 35 | [ |
PdAg/TiO2@ZIF?8 | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 913 | — | [ |
PdNi/CNT?GR | 2 | 2.5 | — | 40 | H2O | 15 | 6.4 | 0.43 | [ |
Pd0.8Co0.2@MSN | 1 | 1 | NaHCO3 | 100 | H2O | 10 | 4082 | 1824 | [ |
PdAg+PEI@HMOS | 1 | 1 | NaOH | 100 | H2O | 22 | 2754 | 125 | [ |
PdAg/NPS | 2 | 2 | — | 40 | H2O | 24 | 204 | 10 | [ |
PdMnx@S?1 | 2 | 2 | NaOH | 80 | H2O | — | — | 2151 | [ |
PdAg@MHCSs | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 2680 | — | [ |
Pd2Cu14@NMHCS | 1 | 1 | NaHCO3 | 100 | H2O | 24 | 1432 | — | [ |
Catalyst | n(H2)/n(CO2) | TR/℃ | pR/MPa | WHSV a /(mL·g | Conv.(%) | Sel.MeOH(%) | Ea/(kJ?mol-1) | TOF/h-1 | STY b /(gMeOH·g | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
5Pd/ZnO | 3∶1 | 250 | 2.0 | 1800 | 10.7 | 60 | 1.8 | 0.0768 | [ | |
Pd/ZnO?2.5 nm | 3∶1 | 250 | 4.5 | 15000 | 1.38 | 74 | 18 | 0.076 | [ | |
PdZn/CNFsc | 9∶1 | 275 | 0.1 | 7500 | 3.3 | 12.1 | 0.004 | [ | ||
0.8Pd?ZnZrOx | 4∶1 | 320 | 5.0 | 24000 | 15 | 75 | 66.6 | 0.71 | [ | |
2Pd?ZnO?np | 3∶1 | 260 | 5.0 | 60000 | 3.3 | 65.3 | 0.443 | [ | ||
Pd@ZIF?8 | 3∶1 | 270 | 4.5 | 21600 | 15.1 | 56.2 | 972 | 0.65 | [ | |
Ca?PdZn/CeO2 | 3∶1 | 220 | 3.0 | 2400 | 7.7 | 100 | 0.088 | [ | ||
Pd0.1Zn1/CNTs | 3∶1 | 250 | 3.0 | 1800 | 6.3 | 99.6 | 56.8 | 41.4 | 0.0371 | [ |
5Pd/ZnO/Al2O3 | 3∶1 | 180 | 3.0 | 3600 | 2.9 | 79.4 | [ | |||
Pd:Zn/CeO2 | 3∶1 | 220 | 2.0 | 96000 | 14.0 | 97 | 0.166 | [ | ||
Pd?P?In2O3 | 4∶1 | 300 | 5.0 | 21000 | 20 | 70 | 0.89 | [ | ||
1Pd/MnO/In2O3 | 3∶1 | 280 | 3.0 | 21000 | 4.5 | 71.3 | 0.241 | [ | ||
Pd?h?In2O3 | 3∶1 | 295 | 3.0 | 19200 | 10.5 | 72.4 | 45.9 | 0.53 | [ | |
Pd@MIL?68(In) d | 3∶1 | 295 | 3.0 | 19200 | 8.1 | 81 | 0.427 | [ | ||
Pd/In2O3/SBA?15 | 4∶1 | 260 | 5.0 | 15000 | 12.6 | 83.9 | 0.011 | [ | ||
Pd?In NPs | 3∶1 | 210 | 5.0 | 86000 | 90 | 35 | 0.131 | [ | ||
In∶Pd(2∶1)/SiO2 | 4∶1 | 300 | 4.0 | 63000 | 61 | 0.083 | [ | |||
Pd?In2O3?CP | 4∶1 | 280 | 5.0 | 48000 | 9.7 | 78 | 84±5 | 1.01 | [ | |
PdMgGa Hydrotalcite?like | 3∶1 | 250 | 3.0 | 15000 | 1.0 | 47 | 59 | 30.6 | 0.02 | [ |
PdZn/SiO2 | 3∶1 | 220 | 0.8 | 4600 | 1.0 | 30 | 58 | [ | ||
PdCu/MCM?41 | 3∶1 | 250 | 4.1 | 3600 | 6.5 | 23 | 0.0230 | [ | ||
Pd(0.34)?Cu/SiO2 | 3∶1 | 250 | 4.1 | 3600 | 6.5 | 30 | 0.08 | 0.036 | [ |
Table 2 Activity of Pd-based catalysts for CO2 hydrogenation to methanol
Catalyst | n(H2)/n(CO2) | TR/℃ | pR/MPa | WHSV a /(mL·g | Conv.(%) | Sel.MeOH(%) | Ea/(kJ?mol-1) | TOF/h-1 | STY b /(gMeOH·g | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
5Pd/ZnO | 3∶1 | 250 | 2.0 | 1800 | 10.7 | 60 | 1.8 | 0.0768 | [ | |
Pd/ZnO?2.5 nm | 3∶1 | 250 | 4.5 | 15000 | 1.38 | 74 | 18 | 0.076 | [ | |
PdZn/CNFsc | 9∶1 | 275 | 0.1 | 7500 | 3.3 | 12.1 | 0.004 | [ | ||
0.8Pd?ZnZrOx | 4∶1 | 320 | 5.0 | 24000 | 15 | 75 | 66.6 | 0.71 | [ | |
2Pd?ZnO?np | 3∶1 | 260 | 5.0 | 60000 | 3.3 | 65.3 | 0.443 | [ | ||
Pd@ZIF?8 | 3∶1 | 270 | 4.5 | 21600 | 15.1 | 56.2 | 972 | 0.65 | [ | |
Ca?PdZn/CeO2 | 3∶1 | 220 | 3.0 | 2400 | 7.7 | 100 | 0.088 | [ | ||
Pd0.1Zn1/CNTs | 3∶1 | 250 | 3.0 | 1800 | 6.3 | 99.6 | 56.8 | 41.4 | 0.0371 | [ |
5Pd/ZnO/Al2O3 | 3∶1 | 180 | 3.0 | 3600 | 2.9 | 79.4 | [ | |||
Pd:Zn/CeO2 | 3∶1 | 220 | 2.0 | 96000 | 14.0 | 97 | 0.166 | [ | ||
Pd?P?In2O3 | 4∶1 | 300 | 5.0 | 21000 | 20 | 70 | 0.89 | [ | ||
1Pd/MnO/In2O3 | 3∶1 | 280 | 3.0 | 21000 | 4.5 | 71.3 | 0.241 | [ | ||
Pd?h?In2O3 | 3∶1 | 295 | 3.0 | 19200 | 10.5 | 72.4 | 45.9 | 0.53 | [ | |
Pd@MIL?68(In) d | 3∶1 | 295 | 3.0 | 19200 | 8.1 | 81 | 0.427 | [ | ||
Pd/In2O3/SBA?15 | 4∶1 | 260 | 5.0 | 15000 | 12.6 | 83.9 | 0.011 | [ | ||
Pd?In NPs | 3∶1 | 210 | 5.0 | 86000 | 90 | 35 | 0.131 | [ | ||
In∶Pd(2∶1)/SiO2 | 4∶1 | 300 | 4.0 | 63000 | 61 | 0.083 | [ | |||
Pd?In2O3?CP | 4∶1 | 280 | 5.0 | 48000 | 9.7 | 78 | 84±5 | 1.01 | [ | |
PdMgGa Hydrotalcite?like | 3∶1 | 250 | 3.0 | 15000 | 1.0 | 47 | 59 | 30.6 | 0.02 | [ |
PdZn/SiO2 | 3∶1 | 220 | 0.8 | 4600 | 1.0 | 30 | 58 | [ | ||
PdCu/MCM?41 | 3∶1 | 250 | 4.1 | 3600 | 6.5 | 23 | 0.0230 | [ | ||
Pd(0.34)?Cu/SiO2 | 3∶1 | 250 | 4.1 | 3600 | 6.5 | 30 | 0.08 | 0.036 | [ |
1 | Chang X., Wang T., Gong J., Energ. Environ. Sci., 2016, 9, 2177—2196 |
2 | Ran J., Jaroniec M., Qiao S. Z., Adv. Mater., 2018, 30(7), 1704649 |
3 | Liu C., Wang W., Liu B., Qiao J., Lv L., Gao X., Zhang X., Xu D., Liu W., Liu J., Jiang Y., Wang Z., Wu L., Wang F., Catalysts, 2019, 9(8), 658 |
4 | Wang Q., Zhang Y., Lin H., Zhu J., Chem. Eur. J., 2019, 25(62), 14026—14035 |
5 | Li T., Zhang W., Qin H., Lu L., Yan S., Zou Z., ChemPhotoChem, 2021, 5(6), 495—501 |
6 | Nguyen T. N., Salehi M., Le Q. V., Seifitokaldani A., Dinh C. T., ACS Catal., 2020, 10(17), 10068—10095 |
7 | Song Y., Chen W., Wei W., Sun Y., Catalysts, 2020, 10(11), 1287 |
8 | Liang S., Huang L., Gao Y., Wang Q., Liu B., Adv. Sci., 2021, 2102886 |
9 | Birdja Y. Y., Perez⁃Gallent E., Figueiredo M. C., Gottle A. J., Calle⁃Vallejo F., Koper M. T. M., Nat. Energ., 2019, 4(9), 732—745 |
10 | Nitopi S., Bertheussen E., Scott S. B., Liu X., Engstfeld A. K., Horch S., Seger B., Stephens I. E. L., Chan K., Hahn C., Norskov J. K., Jaramillo T. F., Chorkendorff I., Chem. Rev., 2019, 119(12), 7610—7672 |
11 | Du X., Jiang Z., Su D., Wang J., ChemSusChem, 2016, 9(4), 322—332 |
12 | Bai S. T., De Smet G., Liao Y., Sun R., Zhou C., Beller M., Maes B. U. W., Sels B. F., Chem. Soc. Rev., 2021, 50(7), 4259—4298 |
13 | Atsbha T. A., Yoon T., Seongho P., Lee C. J., J. CO2 Util., 2021, 44, 101413 |
14 | Zhong J., Yang X., Wu Z., Liang B., Huang Y., Zhang T., Chem. Soc. Rev., 2020, 49(5), 1385—1413 |
15 | Rodriguez J. A., Liu P., Stacchiola D. J., Senanayake S. D., White M. G., Chen J. G., ACS Catal., 2015, 5(11), 6696—6706 |
16 | Witoon T., Numpilai T., Nijpanich S., Chanlek N., Kidkhunthod P., Cheng C. K., Ng K. H., Vo D. V. N., Ittisanronnachai S., Wattanakit C., Chareonpanich M., Limtrakul J., Chem. Eng. J., 2022, 431, 133211 |
17 | Vera C. Y. R., Manavi N., Zhou Z., Wang L. C., Diao W., Karakalos S., Liu B., Stowers K. J., Zhou M., Luo H., Ding D., Chem. Eng. J., 2021, 426, 131767 |
18 | Vidal A. B., Feria L., Evans J., Takahashi Y., Liu P., Nakamura K., Illas F., Rodriguez J. A., J. Phys. Chem. Lett., 2012, 3(16), 2275—2280 |
19 | Posada⁃Perez S., Vines F., Ramirez P. J., Vidal A. B., Rodriguez J. A., Illas F., Phys. Chem. Chem. Phys., 2014, 16(28), 14912—14921 |
20 | Zhang S. K., Wang H., Joule, 2021, 5(5), 1038—1040 |
21 | Hu J., Yu L., Deng J., Wang Y., Cheng K., Ma C., Zhang Q., Wen W., Yu S., Pan Y., Yang J., Ma H., Qi F., Wang Y., Zheng Y., Chen M., Huang R., Zhang S., Zhao Z., Mao J., Meng X., Ji Q., Hou G., Han X., Bao X., Wang Y., Deng D., Nat. Catal., 2021, 4(3), 242—250 |
22 | Zhu J., Cannizzaro F., Liu L., Zhang H., Kosinov N., Filot I. A. W., Rabeah J., Bruckner A., Hensen E. J. M., ACS Catal., 2021, 11, 18, 11371—11384 |
23 | Rui N., Wang Z., Sun K., Ye J., Ge Q., Liu C. J., Appl. Catal. B: Environ., 2017, 218, 488—497 |
24 | Rui N., Zhang F., Sun K., Liu Z., Xu W., Stavitski E., Senanayake S. D., Rodriguez J. A., Liu C. J., ACS Catal., 2020, 10, 19, 11307—11317 |
25 | Tian G., Wu Y., Wu S., Huang S., Gao J., J. Environ. Chem. Eng., 2022, 10(1), 106965 |
26 | Wang J., Sun K., Jia X., Liu C. J., Catal. Today, 2021, 365, 341—347 |
27 | Wang W., Qu Z., Song L., Fu Q., J. Energy Chem., 2020, 40, 22—30 |
28 | Kattel S., Ramirez P. J., Chen J. G., Rodriguez J. A., Liu P., Science, 2017, 355(6331), 1296—1299 |
29 | Jadhav S. G., Vaidya P. D., Bhanage B. M., Joshi J. B., Chem. Eng. Res. Des., 2014, 92(11), 2557—2567 |
30 | Martin O., Martin A. J., Mondelli C., Mitchell S., Segawa T. F., Hauert R., Drouilly C., Curulla⁃Ferre D., Perez⁃Ramirez J., Angew. Chem. Int. Ed., 2016, 55(21), 6261—6265 |
31 | Ojelade O. A., Zaman S. F., Catal. Surv. Asia, 2020, 24(1), 11—37 |
32 | Cai Z., Dai J., Li W., Tan K. B., Huang Z., Zhan G., Huang J., Li Q., ACS Catal., 2020, 10(22), 13275—13289 |
33 | Su X., Lin W., Cheng H., Zhang C., Li Y., Liu T., Zhang B., Wu Q., Yu X., Zhao F., RSC Adv., 2016, 6(105), 103650—103656 |
34 | Liu K., Zhao Z., Lin W., Liu Q., Wu Q., Shi R., Zhang C., Cheng H., Arai M., Zhao F., ChemCatChem, 2019, 11(16), 3919—3926 |
35 | Lin W., Cheng H., Wu Q., Zhang C., Arai M., Zhao F., ACS Catal., 2020, 10, 5, 3285—3296 |
36 | Yang G., Kuwahara Y., Mori K., Louis C., Yamashita H., Appl. Catal. B: Environ., 2021, 283, 119628 |
37 | Verma P., Zhang S., Song S., Mori K., Kuwahara Y., Wen M., Yamashita H., An T., J. CO2 Util., 2021, 54, 101765 |
38 | Gunasekar G. H., Park K., Jung K. D., Yoon S., Inorg. Chem. Front., 2016, 3(7), 882—895 |
39 | Wang J., Zhou C., Gao Z., Feng X., Yamamoto Y., Bao M., ChemCatChem, 2021, 13(11), 2702—2708 |
40 | Liu G., Poths P., Zhang X., Zhu Z., Marshall M., Blankenhorn M., Alexandrova A. N., Bowen K. H., J. Am. Chem. Soc., 2020, 142(17), 7930—7936 |
41 | Masuda S., Mori K., Futamura Y., Yamashita H., ACS Catal., 2018, 8(3), 2277—2285 |
42 | Mori K., Konishi A., Yamashita H., J. Phys. Chem. C, 2020, 124(21), 11499—11505 |
43 | Nguyen L. T. M., Park H., Banu M., Kim J. Y., Youn D. H., Magesh G., Kim W. Y., Lee J. S., RSC Adv., 2015, 5(128), 105560—105566 |
44 | Sun Q., Fu X., Si R., Wang C. H., Yan N., ChemCatChem, 2019, 11(20), 5093—5097 |
45 | Kuwahara Y., Fujie Y., Mihogi T., Yamashita H., ACS Catal., 2020, 10(11), 6356—6366 |
46 | Masuda S., Mori K., Kuwahara Y., Louis C., Yamashita H., ACS Appl. Energy Mater., 2020, 3(6), 5847—5855 |
47 | Sun Q., Chen B. W. J., Wang N., He Q., Chang A., Yang C. M., Asakura H., Tanaka T., Hulsey M. J., Wang C. H., Yu J., Yan N., Angew. Chem. Int. Ed., 2020, 59(45), 20183—20191 |
48 | Yang G., Kuwahara Y., Masuda S., Mori K., Louis C., Yamashita H., J. Mater. Chem. A, 2020, 8(8), 4437—4446 |
49 | Yang G., Kuwahara Y., Mori K., Louis C., Yamashita H., J. Phys. Chem. C, 2021, 125(7), 3961—3971 |
50 | Li Y. F., Lu W., Chen K., Xia M., Jelle A., Ozin G. A., Chem. Eur. J., 2020, 26(54), 12355—12358 |
51 | Zhang H., Xu H., Li Y., Su Y., Appl. Mater. Today, 2020, 19, 100609 |
52 | Jensen L. I. A., Blomberg S., Hulteberg C., Catalysts, 2021, 11(9), 1076 |
53 | Li X., Lin J., Li L., Huang Y., Pan X., Collins S. E., Ren Y., Su Y., Kang L., Liu X., Zhou Y., Wang H., Wang A., Qiao B., Wang X., Zhang T., Angew. Chem. Int. Ed., 2020, 59(45), 19983—19989 |
54 | Li S., Xu Y., Chen Y., Li W., Lin L., Li M., Deng Y., Wang X., Ge B., Yang C., Yao S., Xie J., Li Y., Liu X., Ma D., Angew. Chem. Int. Ed., 2017, 129(36), 10901—10905 |
55 | Nelson N. C., Chen L., Meira D., Kovarik L., Szanyi J., Angew. Chem. Int. Ed., 2020, 132(40), 17810—17816 |
56 | Lebarbier V., Dagle R., Datye A., Wang Y., Appl. Catal. A: Gen., 2010, 379(1/2), 3—6 |
57 | Ye J., Ge Q., Liu C. J., Chem. Eng. Sci., 2015, 135, 193—201 |
58 | Nelson N. C., Nguyen M. T., Glezakou V. A., Rousseau R., Szanyi J., Nat. Catal., 2019, 2(10), 916—924 |
59 | Li Y., Zhang H., Zhang L., Zhang H., Int. J. Hydrogen Energ., 2019, 44(26), 13354—13363 |
60 | Park J. N., McFarland E. W., J. Catal., 2009, 266(1), 92—97 |
61 | Kim H. Y., Lee H. M., Park J. N., J. Phys. Chem. C, 2010, 114(15), 7128—7131 |
62 | Jiang H., Gao Q., Wang S., Chen Y., Zhang M., J. CO2 Util., 2019, 31, 167—172 |
63 | Wang K., Li W., Huang J., Huang J., Zhan G., Li Q., J. Energ. Chem., 2021, 53, 9—19 |
64 | Karelovic A., Ruiz P., ACS Catal., 2013, 3, 12, 2799—2812 |
65 | Olah G. A., Angew. Chem. Int. Ed., 2005, 44(18), 2636—2639 |
66 | Goeppert A., Czaun M., Jones J. P., Surya Prakash G. K., Olah G. A., Chem. Soc. Rev., 2014, 43(23), 7995—8048 |
67 | Yarulina I., Chowdhury A. D., Meirer F., Weckhuysen B. M., Gascon J. , Nat. Catal., 2018, 1(6), 398—411 |
68 | Yang M., Fan D., Wei Y., Tian P., Liu Z., Adv. Mater., 2019, 31(50), 1902181 |
69 | Yarulina I., De Wispelaere K., Bailleul S., Goetze J., Radersma M., Abou⁃Hamad E., Vollmer I., Goesten M., Mezari B., Hensen E. J. M., Martinez⁃Espin J. S., Morten M., Mitchell S., Perez⁃Ramirez J., Olsbye U., Weckhuysen B. M., Van Speybroeck V., Kapteijn F., Gascon J., Nat. Chem., 2018, 10(8), 804—812 |
70 | Galadima A., Muraza O., J. Nat. Gas Sci. Eng., 2015, 25, 303—316 |
71 | Kianfar E., Hajimirzaee S., Mousavian S., Mehr A. S., Microchem. J., 2020, 156, 104822 |
72 | Li T., Shoinkhorova T., Gascon J., Ruiz⁃Martinez J., ACS Catal., 2021, 11(13), 7780—7819 |
73 | Dai C., Chen Z., Du K., Zhao X., Shi Y., Chen X., Liu D., Ma X., Chem. Ind. Eng. Prog., 2020, 39(12), 5029—5041 |
74 | Fan L., Fujimoto K., J. Catal., 1997, 172(1), 238—242 |
75 | Tsubaki N., Fujimoto K., Top. Catal., 2003, 22(3), 325—335 |
76 | Phan X. K., Walmsley J. C., Bakhtiary⁃Davijany H., Myrstad R., Pfeifer P., Venvik H., Holmen A., Catal. Today, 2016, 273, 25—33 |
77 | Jiang F., Wang S., Liu B., Liu J., Wang L., Xiao Y., Xu Y., Liu X., ACS Catal., 2020, 10(19), 11493—11509 |
78 | Khobragade R., Roškarič M., Žerjav G., Košiček M., Zavašnik J., Van de Velde N., Jerman I., Tušar N. N., Pintar A., Appl. Catal. A: Gen., 2021, 627, 118394 |
79 | Ou Z., Ran J., Niu J., Qin C., He W., Yang L., Int. J. Hydrogen Energ., 2020, 45(11), 6328—6340 |
80 | Zhang J., Liao W., Zheng H., Zhang Y., Xia L., Teng B. T., Lu J. Q., Huang W., Zhang Z., J. Catal., 2022, 405, 152—163 |
81 | Bahruji H., Bowker M., Hutchings G., Dimitratos N., Wells P., Gibson E., Jones W., Brookes C., J. Catal., 2016, 343, 133—146 |
82 | Zhang L., Liu X., Wang H., Cao L., Huang C., Li S., Zhang X., Guan Q., Shao X., Lu J., Catal. Sci. Technol., 2021, 11(13), 4398—4405 |
83 | Wang X., Shi H., Szanyi J., Nat. Commun., 2017, 8(1), 1—6 |
84 | Wang X., Shi H., Kwak J. H., Szanyi J., ACS Catal., 2015, 5(11), 6337—6349 |
85 | Han Y., Xu H., Su Y., Xu Z., Wang K., Wang W., J. Catal., 2019, 370, 70—78 |
86 | Li X., Liu G., Xu D., Hong X., Edman Tsang S. C., J. Mater. Chem. A, 2019, 7(41), 23878—23885 |
87 | Li L., Pan X., Lan D., Xu H., Ge J., Zhang H., Zheng Z., Liu J., Xu Z., Liu J., Mater. Today Energ., 2021, 19, 100585 |
88 | Díez⁃Ramírez J., Díaz J. A., Sánchez P., Dorado F., J. CO2 Util., 2017, 22, 71—80 |
89 | Koizumi N., Jiang X., Kugai J., Song C., Catal, Today, 2012, 194(1), 16—24 |
90 | Song Y., Liu X., Xiao L., Wu W., Zhang J., Song X., Catal. Lett., 2015, 145(6), 1272—1280 |
91 | Wang J., Lu S. M., Li J., Li C., Chem. Commun., 2015, 51(99), 17615—17618 |
92 | Kong H., Li H. Y., Lin G. D., Zhang H. B., Catal. Lett., 2011, 141(6), 886—894 |
93 | Liang X. L., Xie J. R., Liu Z. M., Catal. Lett., 2015, 145(5), 1138—1147 |
94 | Díez⁃Ramírez J., Sánchez P., Rodríguez⁃Gómez A., Valverde J. L., Dorado F., Ind. Eng. Chem. Res., 2016, 55(12), 3556—3567 |
95 | Lei L., Wang Y., Zhang Z., An J., Wang F., ACS Catal., 2020, 10, 15, 8788—8814 |
96 | Qin J., Long Y., Wu W., Zhang W., Gao Z., Ma J., J. Catal., 2019, 371, 161—174 |
97 | Lee K., Anjum U., Araújo T. P., Mondelli C., He Q., Furukawa S., Pérez⁃Ramírez J., Kozlov S. M., Yan N., Appl. Catal. B: Environ., 2022, 304, 120994 |
98 | Zabilskiy M., Sushkevich V. L., Newton M. A., Krumeich F., Nachtegaal M., van Bokhoven J. A., Angew. Chem. Int. Ed., 2021, 133(31), 17190—17196 |
99 | Yin Y., Hu B., Li X., Zhou X., Hong X., Liu G., Appl. Catal. B: Environ., 2018, 234, 143—152 |
100 | Cai Z., Huang M., Dai J., Zhan G., Sun F., Zhuang G. L., Wang Y., Tian P., Chen B., Ullah S., Huang J., Li Q., ACS Catal., 2022, 12, 1, 709—723 |
101 | García⁃Trenco A., White E. R., Regoutz A., Payne D. J., Shaffer M. S. P., Williams C. K., ACS Catal., 2017, 7, 2, 1186—1196 |
102 | Sirois S., Castro M., Salahub D. R., Int. J. Quantum Chem., 1994, 52(S28), 645—654 |
103 | Jiang H., Lin J., Wu X., Wang W., Chen Y., Zhang M., J. CO2 Util., 2020, 36, 33—39 |
104 | Collins S., Baltanas M., Garciafierro J., Bonivardi A., J. Catal., 2002, 211(1), 252—264 |
105 | Pan Y. X., Kuai P., Liu Y., Ge Q., Liu C. J., Energ. Environ. Sci., 2010, 3(9), 1322—1325 |
106 | Chiang C. L., Lin K. S., Lin Y. G., Top. Catal., 2017, 60(9), 685—696 |
107 | Zhou X., Qu J., Xu F., Hu J., Foord J. S., Zeng Z., Hong X., Tsang S. C., Chem. Commun., 2013, 49(17), 1747—1749 |
108 | Qu J., Zhou X., Xu F., Gong X. Q., Tsang S. C. E., J. Phys. Chem. C, 2014, 118(42), 24452—24466 |
109 | Malik A. S., Zaman S. F., Al⁃Zahrani A. A., Daous M. A., Driss H., Petrov L. A., Appl. Catal. A: Gen., 2018, 560, 42—53 |
110 | Liang X. L., Dong X., Lin G. D., Zhang H. B., Appl. Catal. B: Environ., 2009, 88(3/4), 315—322 |
111 | Xu J., Su X., Liu X., Pan X., Pei G., Huang Y., Wang X., Zhang T., Geng H., Appl. Catal. A: Gen., 2016, 514, 51—59 |
112 | Liao F., Wu X. P., Zheng J., Li M. M. J., Kroner A., Zeng Z., Hong X., Yuan Y., Gong X. Q., Tsang S. C. E., Green Chem., 2017, 19(1), 270—280 |
113 | Jiang X., Koizumi N., Guo X., Song C., Appl. Catal. B: Environ., 2015, 170, 173—185 |
114 | Nie X., Jiang X., Wang H., Luo W., Janik M. J., Chen Y., Guo X., Song C., ACS Catal., 2018, 8(6), 4873—4892 |
115 | Ota A., Kunkes E. L., Kasatkin I., Groppo E., Ferri D., Poceiro B., Navarro Yerga R. M., Behrens M., J. Catal., 2012, 293, 27—38 |
116 | García⁃Trenco A., Regoutz A., White E. R., Payne D. J., Shaffer M. S. P., Williams C. K., Appl. Catal. B: Environ., 2018, 220, 9—18 |
117 | Snider J. L., Streibel V., Hubert M. A., Choksi T. S., Valle E., Upham D. C., Schumann J., Duyar M. S., Gallo A., Abild⁃Pedersen F., Jaramillo T. F., ACS Catal., 2019, 9(4), 3399—3412 |
118 | Ojelade O. A., Zaman S. F., Daous M. A., Al⁃Zahrani A. A., Malik A. S., Driss H., Shterk G., Gascon. J., Appl. Catal. A: Gen., 2019, 584, 117185 |
119 | Frei M. S., Mondelli C., García⁃Muelas R., Kley K. S., Puértolas B., López N., Safonova O.V., Stewart J. A., Ferre D. C., Pérez⁃Ramírez J., Nat. Commun., 2019, 10(1), 1—11 |
120 | Manrique R., Jiménez R., Rodríguez-Pereira J., Baldovino⁃Medrano V. G., Karelovic A., Int. J. Hydrogen Energ., 2019, 44, 16526—16536 |
121 | Jiang X., Nie X., Wang X., Wang H., Koizumi N., Chen Y., Guo X., Song C., J. Catal., 2019, 369, 21—32 |
122 | Saputro A. G., Putra R. I. D., Maulana A. L., Karami M. U., Pradana M. R., Agusta M. K., Dipojono H. K., Kasai H., J. Energ. Chem., 2019, 35, 79—87 |
123 | Chiavassa D. L., Collins S. E., Bonivardi A. L., Baltanás M. A., Chem. Eng. J., 2009, 150(1), 204—212 |
124 | Zhang M., Wu Y., Dou M., Yu Y., Catal. lett., 2018, 148(9), 2935—2944 |
125 | Liu L., Yao H., Jiang Z., Fang T., Appl. Surf. Sci., 2018, 451, 333—345 |
126 | Collins S. E., Delgado J. J., Mira C., Calvino J. J., Bernal S., Chiavassa D. L., Baltanás M. A., Bonivardi A. L., J. Catal., 2012, 292, 90—98 |
127 | Ye J., Liu C. J., Mei D., Ge Q., J. Catal., 2014, 317, 44—53 |
128 | Habas M. P., Mele F., Sodupe M., Illas F., Surf. Sci., 1999, 431, 208—219 |
129 | Grabow L. C., Mavrikakis M., ACS Catal., 2011, 1,4, 365—384 |
130 | Brix F., Desbuis V., Piccolo L., Gaudry E., J. Phys. Chem. Lett., 2020, 11(18), 7672—7678 |
131 | Yang Y., White M. G., Liu P., J. Phys. Chem. C, 2012, 116(1), 248—256 |
132 | Choi E. J., Lee Y. H., Lee D. W., Moon D. J., Lee K. Y., Mol. Catal., 2017, 434, 146—153 |
133 | Zhao Y. F., Yang Y., Mims C., Peden C. H. F., Li J., Mei D., J. Catal., 2011, 281(2), 199—211 |
[1] | ZHANG Xinxin, XU Di, WANG Yanqiu, HONG Xinlin, LIU Guoliang, YANG Hengquan. Effect of Mn Promoter on CuFe-based Catalysts for CO2 Hydrogenation to Higher Alcohols [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220187. |
[2] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[3] | ZHOU Ying, HE Peinan, FENG Haisong, ZHANG Xin. Optimal Distribution of Active Sites of CO2 Reduction Reaction Catalyzed by Diatomic Site M-N-C [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210640. |
[4] | LIU Hanlin, YIN Linlin, CHEN Xifeng, LI Guodong. Recent Advances in Indium Oxide Based Nanocatalysts for Selective Hydrogenation of CO2 [J]. Chem. J. Chinese Universities, 2021, 42(5): 1430. |
[5] | GENG Chuannan, HUA Wuxing, LING Guowei, TAO Ying, ZHANG Chen, YANG Quanhong. Catalysis in Li-sulfur Battery: Materials and Characterization [J]. Chem. J. Chinese Universities, 2021, 42(5): 1331. |
[6] | YANG Tao, YAO Huiying, LI Qing, HAO Wei, CHI Lifeng, ZHU Jia. Density Functional Theoretical Studies on the Promising Electrocatalyst of M-BHT(M=Co or Cu) for CO2 Reduction to CH4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1268. |
[7] | QI Guodong, YE Xiaodong, XU Jun, DENG Feng. Progress in NMR Studies of Carbohydrates Conversion on Zeolites [J]. Chem. J. Chinese Universities, 2021, 42(1): 148. |
[8] | ZHANG Weizhong,WEN Yueli,SONG Rongpeng,WANG Bin,ZHANG Qian,HUANG Wei. Effect of Surface Cu0 Content of the Catalysts on CO2 Hydrogenation to C2+ Alcohols [J]. Chem. J. Chinese Universities, 2020, 41(6): 1297. |
[9] | LI Zhenhua, SHI Run, ZHAO Jiaqi, ZHANG Tierui. Research Progress of Photo-driven C1 Conversion to Value-added Chemicals † [J]. Chem. J. Chinese Universities, 2020, 41(4): 604. |
[10] | ZHAO Xingling, QI Guodong, WANG Qiang, CHU Yueying, GAO Wei, LI Shenhui, XU Jun, DENG Feng. Structure, Nature and Activity of Ga Species for Propane Aromatization in Ga/ZSM-5 Revealed by Solid-state NMR Spectroscopy [J]. Chem. J. Chinese Universities, 2020, 41(12): 2681. |
[11] | FANG Liang,DING Xiaoli,SONG Yun,LIU Dongming,LI Yongtao,ZHANG Qingan. Effect of Morphological Tuning on Electrochemical Performance of Perovskite LaCoO3 Anodes† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1456. |
[12] | LI Jiahui,QIN Menghan,ZHANG Jie,DU Yi,SUN Dongmei,TANG Yawen. Fabrication of 3D Porous Core-shell PdNi@Au Nanocatalyst for Formic Acid Electro-oxidation† [J]. Chem. J. Chinese Universities, 2019, 40(5): 988. |
[13] | QU Xiaoyu, HU Shaozheng, LI Ping, WANG Fei, ZHAO Yanfeng, WANG Qiong. Molten Salt-assisted Microwave Synthesis and Nitrogen Photofixation Ability of Nickel Doped Graphitic Carbon Nitride† [J]. Chem. J. Chinese Universities, 2017, 38(12): 2280. |
[14] | YANG Dongwei, LI Lu, WANG Qin, WANG Xiaochun, LI Qingyuan, SHI Jin. Catalytic Mechanism of Ionic Liquid for CO2 Electrochemical Reduction† [J]. Chem. J. Chinese Universities, 2016, 37(1): 94. |
[15] | LIU Qian, LI Wenhong, QIU Zhaolai, LI Yuan. Michael Addition of Aminothiophenols to α,β-Unsaturated Ketones with High Steric Hindrance Catalyzed by CeCl3·7H2O-NaI† [J]. Chem. J. Chinese Universities, 2014, 35(3): 538. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||