Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (7): 20220309.doi: 10.7503/cjcu20220309
• Review • Previous Articles Next Articles
DING Yang1,2, WANG Wanhui1,2(), BAO Ming1,2()
Received:
2022-05-08
Online:
2022-07-10
Published:
2022-06-17
Contact:
WANG Wanhui,BAO Ming
E-mail:chem_wangwh@dlut.edu.cn;mingbao@dlut.edu.cn
Supported by:
CLC Number:
TrendMD:
DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid[J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309.
1 | Kennedy C., Steinberger J., Gasson B., Hansen Y., Hillman T., Havranek M., Pataki D., Phdungsilp A., Ramaswami A., Villalba Mendez G., Environ. Sci. Technol., 2009, 43(19), 7297—7302 |
2 | Ghosh S., Modak A., Samanta A., Kole K., Jana S., Adv. Mater., 2021, 2(10), 3161—3187 |
3 | Sun R., Liao Y., Bai S. T., Zheng M., Zhou C., Zhang T., Sels B. F., Energy Environ. Sci., 2021, 14(3), 1247—1285 |
4 | Ye R. P., Ding J., Gong W., Argyle M. D., Zhong Q., Wang Y., Russell C. K., Xu Z., Russell A. G., Li Q., Fan M., Yao Y. G., Nat. Commun., 2019, 10, 5698 |
5 | Wang W. H., Himeda Y., Muckerman J. T., Manbeck G. F., Fujita E., Chem. Rev., 2015, 115(23), 12936—12973 |
6 | Nie R., Tao Y., Nie Y., Lu T., Wang J., Zhang Y., Lu X., Xu C. C., ACS Catal., 2021, 11(3), 1071—1095 |
7 | Senftle T. P., Carter E. A., Acc. Chem. Res., 2017, 50(3), 472—475 |
8 | Gumaa A. El⁃Nagar M. A. H., Iver Lauermann & Christina Roth, Sci. Rep., 2017, 7, 17818 |
9 | Alvarez A., Bansode A., Urakawa A., Bavykina A. V., Wezendonk T. A., Makkee M., Gascon J., Kapteijn F., Chem. Rev., 2017, 117(14), 9804—9838 |
10 | Schaub T., Paciello R. A., Angew. Chem. Int. Ed., 2011, 50(32), 7278—7282 |
11 | Inoue Y., Izumida H., Sasaki Y., Hashimoto H., Chem. Lett., 1976,(8), 863—864 |
12 | Wang W. H., Feng X. J., Bao M., Transformation of Carbon Dioxide to Formic Acid and Methanol, Springer Nature, Singapore, 2018 |
13 | Himeda Y., CO2 Hydrogenation Catalysis, Wiley, Weinheim, 2021 |
14 | Manaka Y., Wang W. H., Suna Y., Kambayashi H., Muckerman J. T., Fujita E., Himeda Y., Adv. Energy Mater., 2014, 4(1), 34—37 |
15 | Onishi N., Laurenczy G., Beller M., Himeda Y., Coord. Chem. Rev., 2018, 373, 317—332 |
16 | Onishi N., Iguchi M., Yang X., Kanega R., Kawanami H., Xu Q., Himeda Y., Adv. Energy Mater, 2019, 9(23), 1801275 |
17 | Lu S. M., Wang Z., Li J., Xiao J., Li C., Green Chem., 2016, 18(16), 4553—4558 |
18 | Tanaka R., Yamashita M., Nozaki K., J. Am. Chem. Soc., 2009, 131(40), 14168—14169 |
19 | Filonenko G. A., Conley M. P., Coperet C., Lutz M., Hensen E. J. M., Pidko E. A., ACS Catal., 2013, 3(11), 2522—2526 |
20 | Xu Z., McNamara N. D., Neumann G. T., Schneider W. F., Hicks J. C., Chemcatchem, 2013, 5(7), 1769—1771 |
21 | McNamara N. D., Hicks J. C., Chemsuschem, 2014, 7(4), 1114—1124 |
22 | Lo H. K., Thiel I., Coperet C., Chem. Eur. J., 2019, 25(40), 9443—9446 |
23 | Tao Y., Ji W., Ding X., Han B. H., J. Mater. Chem. A, 2021, 9(12), 7336—7365 |
24 | Debruyne M., Van Speybroeck V., van der Voort P., Stevens C. V., Green Chem., 2021, 23(19), 7361—7434 |
25 | Modak A., Ghosh A., Mankar A. R., Pandey A., Selvaraj M., Pant K. K., Chowdhury B., Bhaumik A., ACS Sustain. Chem. Eng., 2021, 9(37), 12431—12460 |
26 | Wang Z., Zhang S., Chen Y., Zhang Z., Ma S., Chem. Soc. Rev., 2020, 49(3), 708—735 |
27 | Liu J., Wang N., Ma L., Chem. Asian. J., 2020, 15(3), 338—351 |
28 | Cote A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310(5751), 1166—1170 |
29 | Liu R., Tan K. T., Gong Y., Chen Y., Li Z., Xie S., He T., Lu Z., Yang H., Jiang D., Chem. Soc. Rev., 2021, 50(1), 120—242 |
30 | Park K., Gunasekar G. H., Prakash N., Jung K. D., Yoon S., Chemsuschem, 2015, 8(20), 3410—3413 |
31 | Gunasekar G. H., Park K., Jeong H., Jung K. D., Park K., Yoon S., Catalysts, 2018, 8(7), 295 |
32 | Hariyanandam G. G., Hyun D., Natarajan P., Jung K. D., Yoon S., Catal. Today, 2016, 265, 52—55 |
33 | Gunasekar G. H., Shin J., Jung K. D., Park K., Yoon S., ACS Catal., 2018, 8(5), 4346—4353 |
34 | Gunasekar G. H., Jung K. D., Yoon S., Inorg. Chem., 2019, 58(6), 3717—3723 |
35 | Bavykina A. V., Rozhko E., Goesten M. G., Wezendonk T., Seoane B., Kapteijn F., Makkee M., Gascon J., Chemcatchem, 2016, 8(13), 2217—2221 |
36 | Jose Corral⁃Perez J., Billings A., Stoian D., Urakawa A., Chemcatchem, 2019, 11(19), 4725—4730 |
37 | Ji G. P., Zhao Y. F., Liu Z. M., Green. Chem. Eng., 2022, 3, 96—110 |
38 | Yang Z. Z., Zhang H., Yu B., Zhao Y., Ji G., Liu Z., Chem. Commun., 2015, 51(7), 1271—1274 |
39 | Kann A., Hartmann H., Besmehn A., Hausoul P. J. C., Palkovits R., Chemsuschem, 2018, 11(11), 1857—1865 |
40 | Gunasekar G. H., Yoon S., J. Mater. Chem. A, 2019, 7(23), 14019—14026 |
41 | Shao X., Yang X., Xu J., Liu S., Miao S., Liu X., Su X., Duan H., Huang Y., Zhang T., Chem, 2019, 5(3), 693—705 |
42 | Shao X., Miao X., Yu X., Wang W., Ji X., RSC Adv., 2020, 10(16), 9414—9419 |
43 | Moret S., Dyson P. J., Laurenczy G., Nat. Commun., 2014, 5, 4017 |
44 | Jaleel A., Kim S. H., Natarajan P., Gunasekar G. H., Park K., Yoon S., Jung K. D., J. CO2 Util., 2020, 35, 245—255 |
45 | Chen B., Dong M., Liu S., Xie Z., Yang J., Li S., Wang Y., Du J., Liu H., Han B., ACS Catal., 2020, 10(15), 8557—8566 |
46 | Yang G., Kuwahara Y., Mori K., Louis C., Yamashita H., Nano Res., 2021, 12247 |
47 | Lu W., Wei Z., Gu Z. Y., Liu T. F., Park J., Park J., Tian J., Zhang M., Zhang Q., Gentle T. Ⅲ, Bosch M., Zhou H. C., Chem. Soc. Rev., 2014, 43(16), 5561—5593 |
48 | Trickett C. A., Helal A., Al⁃Maythalony B. A., Yamani Z. H., Cordova K. E., Yaghi O. M., Nat. Rev. Mater., 2017 , 2(8), 17045 |
49 | Tekalgne M. A., Do H. H., Hasani A., Van Le Q., Jang H. W., Ahn S. H., Kim S. Y., Mater. Today. Adv., 2020, 5, 100038 |
50 | Maihom T., Wannakao S., Boekfa B., Limtrakul J., J. Phys. Chem. C, 2013, 117(34), 17650—17658 |
51 | Ye J., Johnson J. K., ACS Catal., 2015, 5(5), 2921—2928 |
52 | An B., Zeng L., Jia M., Li Z., Lin Z., Song Y., Zhou Y., Cheng J., Wang C., Lin W., J. Am. Chem. Soc., 2017, 139(49), 17747—17750 |
53 | Wang S., Hou S., Wu C., Zhao Y., Ma X., Chin. Chem. Lett., 2019, 30(2), 398—402 |
54 | Tshuma P., Makhubela B. C. E., Bingwa N., Mehlana G., Inorg. Chem., 2020, 59(10), 6717—6728 |
55 | Li Z., Rayder T. M., Luo L., Byers J. A., Tsung C. K., J. Am. Chem. Soc., 2018, 140(26), 8082—8085 |
[1] | LI Yulong, XIE Fating, GUAN Yan, LIU Jiali, ZHANG Guiqun, YAO Chao, YANG Tong, YANG Yunhui, HU Rong. A Ratiometric Electrochemical Sensor Based on Silver Ion Interaction with DNA for the Detection of Silver Ion [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220202. |
[2] | ZHANG Xinxin, XU Di, WANG Yanqiu, HONG Xinlin, LIU Guoliang, YANG Hengquan. Effect of Mn Promoter on CuFe-based Catalysts for CO2 Hydrogenation to Higher Alcohols [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220187. |
[3] | ZHOU Leilei, CHENG Haiyang, ZHAO Fengyu. Research Progress of CO2 Hydrogenation over Pd-based Heterogeneous Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220279. |
[4] | JIANG Hongbin, DAI Wenchen, ZHANG Rao, XU Xiaochen, CHEN Jie, YANG Guang, YANG Fenglin. Research on Co3O4/UiO-66@α-Al2O3 Ceramic Membrane Separation and Catalytic Spraying Industry VOCs Waste Gas [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220025. |
[5] | GAO Wenxiu, LYU Jieqiong, GAO Yongping, KONG Changjian, WANG Xueping, GUO Shengnan, LOU Dawei. Preparation of Ethyl α⁃Cyanocinnamate Catalyzed by Nitrogen-rich Porous Organic Polymers [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220078. |
[6] | ZHANG Xiaoyu, XUE Dongping, DU Yu, JIANG Su, WEI Yifan, YAN Wenfu, XIA Huicong, ZHANG Jianan. MOF-derived Carbon-based Electrocatalysts Confinement Catalyst on O2 Reduction and CO2 Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210689. |
[7] | WANG Di, ZHONG Keli, TANG Lijun, HOU Shuhua, LYU Chunxin. Synthesis of Schiff-based Covalent Organic Framework and Its Recognition of I ‒ [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220115. |
[8] | WANG Kaixuan, LI Ziping, CHEN Xianyang, CUI Yong. Synthesis, Structure and Characterization of a Dihydrophenazine Based 3D Covalent Organic Framework [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220210. |
[9] | CHANG Shuqing, XIN Xu, HUANG Yaqi, ZHANG Xincong, FU Yanghe, ZHU Weidong, ZHANG Fumin, LI Xiaona. Pyroelectrically-induced Catalytic Performance of Zr-based MOF Under Cold-hot Alternation [J]. Chem. J. Chinese Universities, 2021, 42(8): 2558. |
[10] | LIU Hanlin, YIN Linlin, CHEN Xifeng, LI Guodong. Recent Advances in Indium Oxide Based Nanocatalysts for Selective Hydrogenation of CO2 [J]. Chem. J. Chinese Universities, 2021, 42(5): 1430. |
[11] | ZHAO Kaiqing, WU Ruoyu, LUO Yifeng, SHI Chunhong, HU Jun. Construction of Active Sites in Porous Organic Polymers for Various Heavy Metal Ions Capture [J]. Chem. J. Chinese Universities, 2021, 42(3): 834. |
[12] | YAN Yanhong, WU Simin, YAN Yilun, TANG Xihao, CAI Songliang, ZHENG Shengrun, ZHANG Weiguang, GU Fenglong. Sulfonic Acid-functionalized Spherical Covalent Organic Framework with Ultrahigh Capacity for the Removal of Cationic Dyes [J]. Chem. J. Chinese Universities, 2021, 42(3): 956. |
[13] | XIAO Zhaozhong, MA Zhi, PIAO Lingyu. Co-catalytic Effect of Ni2P on Photocatalytic Formic Acid Dehydrogenation over Different Semiconductors [J]. Chem. J. Chinese Universities, 2021, 42(12): 3692. |
[14] | YAN Yanhong, LI Shuqing, TANG Xihao, ZHENG Shengrun, CAI Songliang, ZHANG Weiguang, GU Fenglong. Cationic Covalent Organic Frameworks for the Enhanced Removal of Non-steroidal Anti-inflammatory Drugs from Water [J]. Chem. J. Chinese Universities, 2021, 42(10): 3091. |
[15] | CHEN Xiao, SHEN Boyuan, XIONG Hao, WEI Fei. Atomic Scale Structure of Beam Sensitive Materials [J]. Chem. J. Chinese Universities, 2021, 42(1): 133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||