Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (4): 652.doi: 10.7503/cjcu20190649
Previous Articles Next Articles
JIN Xin1,FENG Xilan1,LIU Dapeng1,*(),SU Yutong1,ZHANG Zheng1,ZHANG Yu1,2,3,*(
)
Received:
2019-12-11
Online:
2020-04-10
Published:
2020-02-17
Contact:
Dapeng LIU,Yu ZHANG
E-mail:liudp@buaa.edu.cn;jade@buaa.edu.cn
Supported by:
CLC Number:
TrendMD:
JIN Xin, FENG Xilan, LIU Dapeng, SU Yutong, ZHANG Zheng, ZHANG Yu. Auto-redox Strategy for the Synthesis of Co3O4/CeO2 Nanocomposites and Their Structural Optimization Towards Catalytic CO Oxidation[J]. Chem. J. Chinese Universities, 2020, 41(4): 652.
Fig.1 TEM images(A—H) and XRD patterns(I, J) of Co3O4/CeO2 samples before(A—D, I) and after calcination(E—H, J)(A, E) Co1/Ce5; (B, F) Co5/Ce1; (C, G) Co9/Ce1; (D, H) Co15/Ce1; (I, J) a. CeO2; b. Co1/Ce5; c. Co5/Ce1; d. Co9/Ce1; e. Co15/Ce1.
Sample | SBET/(m2·g-1) | Pore volume/(cm3·g-1) | Pore size/nm |
---|---|---|---|
Co9/Ce1-tC-300 | 113.6700 | 0.230290 | 6.3285 |
Co9/Ce1-tC-400 | 95.2122 | 0.277253 | 9.4890 |
Co9/Ce1-tC-500 | 77.2589 | 0.221758 | 9.2293 |
Co3O4 | 19.5577 | 0.189476 | 29.7476 |
CeO2 | 74.7081 | 0.097905 | 3.9790 |
Sample | SBET/(m2·g-1) | Pore volume/(cm3·g-1) | Pore size/nm |
---|---|---|---|
Co9/Ce1-tC-300 | 113.6700 | 0.230290 | 6.3285 |
Co9/Ce1-tC-400 | 95.2122 | 0.277253 | 9.4890 |
Co9/Ce1-tC-500 | 77.2589 | 0.221758 | 9.2293 |
Co3O4 | 19.5577 | 0.189476 | 29.7476 |
CeO2 | 74.7081 | 0.097905 | 3.9790 |
Sample | Amount of catalyst/mg | Feed gas | t100/℃ | Ref. |
---|---|---|---|---|
Co3O4@CeO2 core@shell cubes | 25 | 1%CO/20%O2/79%N2(30 mL/min) | 190 | [18] |
CeO2/Co3O4 yolk-shell nanospheres | 100 | 1%CO/99%Air(30 mL/min) | 110 | [28] |
Co3O4/CeO2 nanosheets | 30 | 1%CO/99%Air(30 mL/min) | 140 | [29] |
CeO2/Co3O4 nanojunctions | 50 | 1%CO/99%Air(30 mL/min) | 110 | [32] |
CeO2@Co3O4 core@shell microspheres | 50 | 1%CO/20%O2/79%N2(50 mL/min) | 170 | [31] |
Co3O4/CeO2 composites | 25 | 1%CO/99%Air(30 mL/min) | 140 | This work |
Sample | Amount of catalyst/mg | Feed gas | t100/℃ | Ref. |
---|---|---|---|---|
Co3O4@CeO2 core@shell cubes | 25 | 1%CO/20%O2/79%N2(30 mL/min) | 190 | [18] |
CeO2/Co3O4 yolk-shell nanospheres | 100 | 1%CO/99%Air(30 mL/min) | 110 | [28] |
Co3O4/CeO2 nanosheets | 30 | 1%CO/99%Air(30 mL/min) | 140 | [29] |
CeO2/Co3O4 nanojunctions | 50 | 1%CO/99%Air(30 mL/min) | 110 | [32] |
CeO2@Co3O4 core@shell microspheres | 50 | 1%CO/20%O2/79%N2(50 mL/min) | 170 | [31] |
Co3O4/CeO2 composites | 25 | 1%CO/99%Air(30 mL/min) | 140 | This work |
[1] | Wang X., Liu D. P., Song S. Y., Zhang H. J., J. Am. Chem. Soc., 2013, 135( 42), 15864— 15872 |
[2] | Fu Q., Saltsburg H., Flytzani-Stephanopoulos M ., Science, 2003, 301( 5635), 935— 938 |
[3] | Caputo T., Lisi L., Pirone R., Russo G., Appl. Catal. A-Gen., 2008, 348( 1), 42— 53 |
[4] | Chen J. F., Zhu J. J., Zhan Y. Y., Lin X. Y., Cai G. H., Wei K. M., Zheng Q., Appl. Catal. A-Gen., 2010, 377( 1/2), 121— 127 |
[5] | Huang X. S., Sun H., Wang L. C., Liu Y. M., Fan K. N., Cao Y., Appl. Catal. B-Environ., 2009, 90( 1/2), 224— 232 |
[6] | Xi G. C., Ye J. H., Ma Q., Su N., Bai H., Wang C., J. Am. Chem. Soc., 2012, 134( 15), 6508— 6511 |
[7] | Kayama T., Yamazaki K., Shinjoh H., J. Am. Chem. Soc., 2010, 132( 38), 13154— 13155 |
[8] | Li W., Feng X. L., Liu D. P., Zhang Y., Sci. China Mater., 2016, 59( 3), 191— 199 |
[9] | Wang X., Liu D. P., Li J. Q., Zhen J. M., Wang F., Zhang H. J., Chem. Sci., 2015, 6, 2877— 2884 |
[10] | Ayman A. D., Takanabe K., Fujdala K. L., Hao X., Truex T. J., Cai J., Buda C., Neurock M., Iglesia E., J. Am. Chem. Soc., 2011, 133( 12), 4498— 4517 |
[11] | Zhu H. Y., Wu Z. L., Su D., Veith G. M., Lu H. F., Zhang P. F., Chai S. H., Dai S., J. Am. Chem. Soc., 2015, 137( 32), 10156— 10159 |
[12] | Wang Y. G., Cantu D. C., Lee M. S., Li J., Glezakou V. A., Rousseau R., J. Am. Chem. Soc., 2016, 138( 33), 10467— 10476 |
[13] | Liu D. P., Li W., Feng X. L., Zhang Y., Chem. Sci., 2015, 6( 12), 7015— 7019 |
[14] | Climent V., Herrero E .,Feliu J. M. Electrochim. Acta, 1998, 44( 8/9), 1403— 1414 |
[15] | Asset T., Job N., Busby Y., Crisci A., Martin V., Stergiopoulos V., Bonnaud C., Serov A., Atanassov P., Chattot R., Dubau L., Maillard F., ACS Catal., 2018, 8( 2), 893— 903 |
[16] | Xia Z. H., AN L., Chen P. K., Xia D. G., Adv. Energy Mater., 2016, 6( 17), 1600458 |
[17] | Hu Y., Jensen J. O., Zhang W., Cleemann L. N., Pan C., Li Q. F ., ChemCatChem, 2016, 8( 19), 3131— 3136 |
[18] | Zhen J. M., Wang X., Liu D. P., Song S. Y., Wang Z., Wang Y. H., Li J. Q., Wang F., Zhang H. J., Chem. Eur. J., 2014, 20, 4469— 4473 |
[19] | Ching S., Kriz D. A., Luthy K. M., Njagi E. C., Ssuib S. L., Chem. Commun., 2011, 47( 29), 8286— 8288 |
[20] | Rezaei P., Rezaei M., Meshkani F., Ultrason. Sonochem., 2019, 57, 212— 222 |
[21] | Deka U., Lezcano-Gonzalez I., Weckhuysen B. M., Beale A. M., ACS Catal., 2013, 3( 3), 413— 427 |
[22] | Liu H. B., Liu Z., Qian X. M., Guo Y. B., Cui S., Sun L. F., Song Y. L., Li Y. L., Zhu D. B., Cryst. Growth Des., 2010, 10( 1), 237— 243 |
[23] | Xie X. W., Li Y., Liu Z. Q., Haruta M., Shen W. J ., Nature, 2009, 458( 7239), 746— 749 |
[24] | Seo B., Sa Y. J., Woo J., Kwon K., Park J., Shin T. J., Jeong H. Y., Joo S. H., ACS Catal., 2016, 6, 4347— 4355 |
[25] | Ma C. Y., Mu Z., Li J. J., Jin Y. G., Cheng J., Lu G. Q., Hao Z. P., Qiao S. Z., J. Am. Chem. Soc., 2010, 132( 8), 2608— 2613 |
[26] | Hao Y. C., Lu Z. Y., Zhang G. X., Chang Z., Lou L., Sun X. M., Energy Technol., 2017, 5( 8), 1265— 1271 |
[27] | Bai F., Huang H., Tan Y. L., Hou C. L., Zhang P., Electrochim. Acta, 2015, 176, 280— 284 |
[28] | Feng X. L., Liu D. P., Li W., Jin X., Zhang Z., Zhang Y., Inorg. Chem. Front., 2020, 7( 2), 421— 426 |
[29] | Jin X., Duan Y., Liu D. P., Feng X. L., Li W., Zhang Z., Zhang Y., ACS Appl. Nano Mater., 2019, 2( 9), 5769— 5778 |
[30] | Li W., Liu D. P., Feng X. L., Zhang Z., Jin X., Zhang Y., Adv. Energy Mater. 2019, 9, 1803583 |
[31] | Zhang L., Zhang L., Xu G. C., Zhang C., Li X., Sun Z. P., Jia D. Z., New J. Chem., 2017, 41, 13418— 13424 |
[32] | Wang C. L., Wang D. D., Yang Y., Li R., Chen C. L., Chen Q. W ., Nanoscale, 2016, 8( 47), 19761— 19768 |
[1] | WANG Mingzhi, ZHENG Yanping, WENG Weizheng. Catalytic Methane Combustion over CeO2 Supported PdO and Ce1‒x Pd x O2‒δ Species [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210816. |
[2] | GAO Zhongnan, GUO Lihong, ZHAO Dongyue, LI Xingang. Effect of A Site-deficiency on the Structure and Catalytic Oxidation Activity of the La-Sr-Co-O Perovskite [J]. Chem. J. Chinese Universities, 2021, 42(9): 2869. |
[3] | WANG Rui, HUANG Xinsong, LIU Tian⁃Fu, CAO Rong. Metal-organic Frameworks for CO Oxidation [J]. Chem. J. Chinese Universities, 2020, 41(10): 2174. |
[4] | ZHOU Hai, CHEN Hao, GUO Ya, KANG Min. Synthesis of Meso-porous Co3O4 Polyhedra and Their Electrochemical Properties† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1374. |
[5] | Long TIAN,Yan LONG,Shuyan SONG,Cheng WANG. Synthesis of Flower-like Structured Mn/CuO-CeO2 and the Catalytic Performance for CO Oxide Reaction † [J]. Chem. J. Chinese Universities, 2019, 40(12): 2549. |
[6] | LIU Jinghua, DING Tong, TIAN Ye, LI Xingang. Enhanced CO Oxidation Performance over Potassium-promoted Pt/TiO2 Catalysts† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1467. |
[7] | HE Jianping, ZHANG Lei, CHEN Lin, YANG Zhanxu, TONG Yufei. Effect of CeO2 on Cu/Zn-Al Catalysts Derived from Hydrotalcite Precursor for Methanol Steam Reforming† [J]. Chem. J. Chinese Universities, 2017, 38(10): 1822. |
[8] | ZENG Liangpeng, HUANG Fan, ZHU Xing, ZHENG Min, LI Kongzhai. Chemical Looping Conversion of Methane over CeO2-based and Co3O4-based Co3O4-CeO2 Oxygen Carriers:Controlling of Product Selectivity† [J]. Chem. J. Chinese Universities, 2017, 38(1): 115. |
[9] | KONG Lingzhi, WANG Qian, XU Li, YAN Yongsheng, LI Huaming, YANG Xiangguang. Influence of CuO on Ce-Zr-O2 Dispersion on Catalytic Properties in CO Oxidation† [J]. Chem. J. Chinese Universities, 2015, 36(7): 1372. |
[10] | LIU Qingyu, HE Shenggui. Oxidation of Carbon Monoxide on Atomic Clusters† [J]. Chem. J. Chinese Universities, 2014, 35(4): 665. |
[11] | ZHANG Ye, ZHOU Jiajia, WU Guisheng, MAO Dongsen, LU Guanzhong. Influence of the Surface Species over Co3O4 on the Formaldehyde Catalytic Oxidation Performance† [J]. Chem. J. Chinese Universities, 2014, 35(12): 2598. |
[12] | XU Li, CHEN Chao, WANG Rui, LUO Jia-Huan, LIU Yun-Ling, ZHANG Ning. Preparation of CuO/CeO2 Catalysts from Metal-organic Frameworks Precursor for Preferential CO Oxidation [J]. Chem. J. Chinese Universities, 2013, 34(8): 1907. |
[13] | SHEN Pan, CHEN Chao, WANG Rui, JIANG Wan, ZHANG Ning. CuO/CeO2 Catalysts Prepared by Iodic Acid Improved Sol-gel Method for Preferential CO Oxidation [J]. Chem. J. Chinese Universities, 2013, 34(11): 2580. |
[14] | CHEN Jing, HUANG Xin-Song, LI Guang-She. Synthesis of Ag, CeO2, Ag-CeO2 Nanoparticles and Their Applications in Catalytic CO Oxidation [J]. Chem. J. Chinese Universities, 2013, 34(1): 155. |
[15] |
CHEN Li-Xian2, LU Yan-Ting2, WENG Shao-Huang2, ZHOU Jian-Zhang1*, LIN Zhong-Hua1 . Preparation and Performance of Solid-state Electrochromic Devices Based on Polyaniline [J]. Chem. J. Chinese Universities, 2009, 30(3): 557. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||