Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (4): 20240490.doi: 10.7503/cjcu20240490
• Physical Chemistry • Previous Articles Next Articles
Received:
2024-10-31
Online:
2025-04-10
Published:
2024-12-24
Contact:
YANG Siwei
E-mail:yangsiwei@sxgkd.edu.cn;huangxr@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
YANG Siwei, HUANG Xuri. Theoretical Study of B, N Co-doped Fullerene C70 as Non-metal Electrocatalysts for Oxygen Reduction and Evolution[J]. Chem. J. Chinese Universities, 2025, 46(4): 20240490.
System | ΔG*OOH/eV | ΔG*O/eV | ΔG*OH/eV | System | ΔG*OOH/eV | ΔG*O/eV | ΔG*OH/eV |
---|---|---|---|---|---|---|---|
C68B(1)N(2) | 3.27 | -0.01 | 0.16 | C68B(3)N(4) | 4.37 | 2.00 | 1.40 |
C68B(1)N(3) | 3.61 | 1.95 | 0.68 | C68B(3)N(5) | 4.18 | 1.25 | 1.26 |
C68B(1)N(4) | 4.40 | 1.94 | 1.44 | C68B(4)N(1) | 3.58 | 1.97 | 0.55 |
C68B(1)N(5) | 4.25 | 1.79 | 1.31 | C68B(4)N(2) | 3.74 | 1.57 | 0.78 |
C68B(2)N(1) | 3.20 | 0 | 0.08 | C68B(4)N(3) | 3.74 | 1.90 | 0.73 |
C68B(2)N(3) | 3.85 | 1.28 | 0.90 | C68B(4)N(5) | 2.98 | 0.22 | -0.01 |
C68B(2)N(4) | 4.52 | 1.97 | 1.59 | C68B(5)N(1) | 3.65 | 1.44 | 0.71 |
C68B(2)N(5) | 4.32 | 1.99 | 1.35 | C68B(5)N(2) | 3.73 | 1.85 | 0.78 |
C68B(3)N(1) | 4.07 | 1.53 | 1.10 | C68B(5)N(3) | 4.30 | 1.62 | 1.22 |
C68B(3)N(2) | 3.79 | 1.13 | 0.78 | C68B(5)N(4) | 4.19 | 1.44 | 1.24 |
Table 1 Adsorption free energies of *OOH, *O and *OH
System | ΔG*OOH/eV | ΔG*O/eV | ΔG*OH/eV | System | ΔG*OOH/eV | ΔG*O/eV | ΔG*OH/eV |
---|---|---|---|---|---|---|---|
C68B(1)N(2) | 3.27 | -0.01 | 0.16 | C68B(3)N(4) | 4.37 | 2.00 | 1.40 |
C68B(1)N(3) | 3.61 | 1.95 | 0.68 | C68B(3)N(5) | 4.18 | 1.25 | 1.26 |
C68B(1)N(4) | 4.40 | 1.94 | 1.44 | C68B(4)N(1) | 3.58 | 1.97 | 0.55 |
C68B(1)N(5) | 4.25 | 1.79 | 1.31 | C68B(4)N(2) | 3.74 | 1.57 | 0.78 |
C68B(2)N(1) | 3.20 | 0 | 0.08 | C68B(4)N(3) | 3.74 | 1.90 | 0.73 |
C68B(2)N(3) | 3.85 | 1.28 | 0.90 | C68B(4)N(5) | 2.98 | 0.22 | -0.01 |
C68B(2)N(4) | 4.52 | 1.97 | 1.59 | C68B(5)N(1) | 3.65 | 1.44 | 0.71 |
C68B(2)N(5) | 4.32 | 1.99 | 1.35 | C68B(5)N(2) | 3.73 | 1.85 | 0.78 |
C68B(3)N(1) | 4.07 | 1.53 | 1.10 | C68B(5)N(3) | 4.30 | 1.62 | 1.22 |
C68B(3)N(2) | 3.79 | 1.13 | 0.78 | C68B(5)N(4) | 4.19 | 1.44 | 1.24 |
System | ΔG1/eV | ΔG2/eV | ΔG3/eV | ΔG4/eV | ηORR/V | ηOER/V | U | U |
---|---|---|---|---|---|---|---|---|
C68B(1)N(2) | -1.65 | -3.28 | 0.17 | -0.16 | 1.40 | 2.05 | -0.17 | 3.28 |
C68B(1)N(3) | -1.31 | -1.66 | -1.27 | -0.68 | 0.55 | 0.43 | 0.68 | 1.66 |
C68B(1)N(4) | -0.52 | -2.46 | -0.50 | -1.44 | 0.73 | 1.23 | 0.50 | 2.46 |
C68B(1)N(5) | -0.67 | -2.46 | -0.48 | -1.31 | 0.75 | 1.23 | 0.48 | 2.46 |
C68B(2)N(1) | -1.72 | -3.20 | 0.08 | -0.08 | 1.31 | 1.97 | -0.08 | 3.20 |
C68B(2)N(3) | -1.07 | -2.57 | -0.38 | -0.90 | 0.85 | 1.34 | 0.38 | 2.57 |
C68B(2)N(4) | -0.40 | -2.55 | -0.38 | -1.59 | 0.85 | 1.32 | 0.38 | 2.55 |
C68B(2)N(5) | -0.60 | -2.33 | -0.64 | -1.35 | 0.63 | 1.10 | 0.60 | 2.33 |
C68B(3)N(1) | -0.85 | -2.54 | -0.43 | -1.10 | 0.80 | 1.31 | 0.43 | 2.54 |
C68B(3)N(2) | -1.13 | -2.66 | -0.35 | -0.78 | 0.88 | 1.43 | 0.35 | 2.66 |
C68B(3)N(4) | -0.55 | -2.37 | -0.60 | -1.40 | 0.68 | 1.14 | 0.55 | 2.37 |
C68B(3)N(5) | -0.74 | -2.93 | 0.01 | -1.26 | 1.24 | 1.70 | -0.01 | 2.93 |
C68B(4)N(1) | -1.34 | -1.61 | -1.42 | -0.55 | 0.68 | 0.38 | 0.55 | 1.61 |
C68B(4)N(2) | -1.18 | -2.17 | -0.79 | -0.78 | 0.45 | 0.94 | 0.78 | 2.17 |
C68B(4)N(3) | -1.18 | -1.84 | -1.17 | -0.73 | 0.50 | 0.61 | 0.73 | 1.84 |
C68B(4)N(5) | -1.94 | -2.76 | -0.23 | 0.01 | 1.24 | 1.53 | -0.01 | 2.76 |
C68B(5)N(1) | -1.27 | -2.21 | -0.73 | -0.71 | 0.52 | 0.98 | 0.71 | 2.21 |
C68B(5)N(2) | -1.19 | -1.88 | -1.07 | -0.78 | 0.45 | 0.65 | 0.78 | 1.88 |
C68B(5)N(3) | -0.62 | -2.68 | -0.40 | -1.22 | 0.83 | 1.45 | 0.40 | 2.68 |
C68B(5)N(4) | -0.73 | -2.75 | -0.20 | -1.24 | 1.03 | 1.52 | 0.20 | 2.75 |
Table 2 Free energy changes of each elementary step(ΔG1, ΔG2, ΔG3 and ΔG4) in ORR on C68B(n)N(m)and the overpotential of ORR and OER (ηORR and ηOER)
System | ΔG1/eV | ΔG2/eV | ΔG3/eV | ΔG4/eV | ηORR/V | ηOER/V | U | U |
---|---|---|---|---|---|---|---|---|
C68B(1)N(2) | -1.65 | -3.28 | 0.17 | -0.16 | 1.40 | 2.05 | -0.17 | 3.28 |
C68B(1)N(3) | -1.31 | -1.66 | -1.27 | -0.68 | 0.55 | 0.43 | 0.68 | 1.66 |
C68B(1)N(4) | -0.52 | -2.46 | -0.50 | -1.44 | 0.73 | 1.23 | 0.50 | 2.46 |
C68B(1)N(5) | -0.67 | -2.46 | -0.48 | -1.31 | 0.75 | 1.23 | 0.48 | 2.46 |
C68B(2)N(1) | -1.72 | -3.20 | 0.08 | -0.08 | 1.31 | 1.97 | -0.08 | 3.20 |
C68B(2)N(3) | -1.07 | -2.57 | -0.38 | -0.90 | 0.85 | 1.34 | 0.38 | 2.57 |
C68B(2)N(4) | -0.40 | -2.55 | -0.38 | -1.59 | 0.85 | 1.32 | 0.38 | 2.55 |
C68B(2)N(5) | -0.60 | -2.33 | -0.64 | -1.35 | 0.63 | 1.10 | 0.60 | 2.33 |
C68B(3)N(1) | -0.85 | -2.54 | -0.43 | -1.10 | 0.80 | 1.31 | 0.43 | 2.54 |
C68B(3)N(2) | -1.13 | -2.66 | -0.35 | -0.78 | 0.88 | 1.43 | 0.35 | 2.66 |
C68B(3)N(4) | -0.55 | -2.37 | -0.60 | -1.40 | 0.68 | 1.14 | 0.55 | 2.37 |
C68B(3)N(5) | -0.74 | -2.93 | 0.01 | -1.26 | 1.24 | 1.70 | -0.01 | 2.93 |
C68B(4)N(1) | -1.34 | -1.61 | -1.42 | -0.55 | 0.68 | 0.38 | 0.55 | 1.61 |
C68B(4)N(2) | -1.18 | -2.17 | -0.79 | -0.78 | 0.45 | 0.94 | 0.78 | 2.17 |
C68B(4)N(3) | -1.18 | -1.84 | -1.17 | -0.73 | 0.50 | 0.61 | 0.73 | 1.84 |
C68B(4)N(5) | -1.94 | -2.76 | -0.23 | 0.01 | 1.24 | 1.53 | -0.01 | 2.76 |
C68B(5)N(1) | -1.27 | -2.21 | -0.73 | -0.71 | 0.52 | 0.98 | 0.71 | 2.21 |
C68B(5)N(2) | -1.19 | -1.88 | -1.07 | -0.78 | 0.45 | 0.65 | 0.78 | 1.88 |
C68B(5)N(3) | -0.62 | -2.68 | -0.40 | -1.22 | 0.83 | 1.45 | 0.40 | 2.68 |
C68B(5)N(4) | -0.73 | -2.75 | -0.20 | -1.24 | 1.03 | 1.52 | 0.20 | 2.75 |
1 | Tang T. M., Bai X., Wang Z. L., Guan J. Q., Chem. Sci., 2024, 15(14), 5082—5112 |
2 | Chen Y. J., Cui H., Jiang Q., Bai X., Shan P. Y., Jia Z. P., Lu S., Song P., Feng R., Kang Q., Liang Z. Y., Yuan H. K., ACS Appl. Nano Mater., 2023, 6(9), 7694—7703 |
3 | Liu X. M., Cui X. Y., Dastafkan K., Wang H. F., Tang C., Zhao C., Chen A. B., He C. X., Han M. H., Zhang Q., J. Energy Chem., 2021, 53, 290—302 |
4 | Chang J. W., Zhang Q., Yu J. K., Jing W., Wang S. Y., Yin G. C., Waterhouse G. I. N., Lu S. Y., Adv. Sci., 2023, 10(22), 2301656 |
5 | Li Y. W., Zhang W. J., Li J., Ma H. Y., Du H. M., Li D. C., Wang S. N., Zhao J. S., Dou J. M., Xu L. Q., ACS Appl. Mater. Interfaces, 2020, 12(40), 44710—44719 |
6 | Hu Y. J., Zhao X., Yang Y., Xiao W. J., Zhou X., Wang D. G., Wang G., Bi J. S., Luo Z. J., Liu X. F., Appl. Surf. Sci., 2023, 614, 156256 |
7 | Niu H., Wan X. H., Wang X. T., Shao C., Robertson J., Zhang Z. F., Guo Y. Z., ACS Sustainable Chem. Eng., 2021, 9(9), 3590—3599 |
8 | Li D. Y., Zhang A. D., Feng Z. Z., Wang W. T., ACS Appl. Mater. Interfaces, 2024, 16(5), 5779—5791 |
9 | Ren M. Q., Lei J. C., Zhang J. B., Yakobson B. I., Tour J. M., ACS Appl. Mater. Interfaces, 2021, 13(36), 42715—42723 |
10 | Zhang W. J., Li J., Wei Z. D., Chin. J. Catal., 2023, 48, 15—31 |
11 | Wang J., Kong H., Zhang J. Y., Hao Y., Shao Z. P., Ciucci F., Prog. Mater. Sci., 2021, 116, 100717 |
12 | Hu C. G., Paul R., Dai Q. B., Dai L. M., Chem. Soc. Rev., 2021, 50(21), 11785—11843 |
13 | Zhao S. L., Wang D. W., Amal R., Dai L. M., Adv. Mater., 2019, 31(9), 1801526 |
14 | Guo K., Li N., Bao L. P., Lu X., Green Energy Environ., 2024, 9(1), 7—27 |
15 | Sinha S., Kim H., Robertson A. W., Mater. Today Adv., 2021, 12, 100169 |
16 | Kothandam G., Singh G., Guan X. W., Lee J. M., Ramadass K., Joseph S., Benzigar M., Karakoti A., Yi J. B., Kumar P., Vinu A., Adv. Sci., 2023, 10(18), 2301045 |
17 | Munawar T., Sardar S., Mukhtar F., Nadeem M. S., Manzoor S., Ashiq M. N., Khan S. A., Koc M., Iqbal F., Phys. Chem. Chem. Phys., 2023, 25(9), 7010—7027 |
18 | Park C., Lee E., Kim S. H., Han J. G., Hwang C., Joo S. H., Baek K., Kang S. J., Kwak S. K., Song H. K., Choi N. S., J. Power Sources, 2022, 521, 230923 |
19 | Nguyen N. N., Lee H. C., Yoo M. S., Lee E., Lee H., Lee S. B., Cho K., Adv. Sci., 2020, 7(6), 1902315 |
20 | Benzigar M. R., Joseph S., Ilbeygi H., Park D. H., Sarkar S., Chandra G., Umapathy S., Srinivasan S., Talapaneni S. N., Vinu A., Angew. Chem. Int. Ed., 2018, 57(2), 569—573 |
21 | Benzigar M. R., Joseph S., Baskar A. V., Park D. H., Chandra G., Umapathy S., Talapaneni S. N., Vinu A., Adv. Funct. Mater., 2018, 28(35), 1803701 |
22 | Gao R., Dai Q. B., Du F., Yan D. P., Dai L. M., J. Am. Chem. Soc., 2019, 141(29), 11658—11666 |
23 | Ahsan M. A., He T. W., Eid K., Abdullah A. M., Curry M. L., Du A. J., Puente Santiago A. R. P., Echegoyen L., Noveron J. C., J. Am. Chem. Soc., 2021, 143(2), 1203—1215 |
24 | Zhai Q. F., Pan Y., Dai L. M., Acc. Mater. Res., 2021, 2(12), 1239—1250 |
25 | Wu X., Tang C. J., Cheng Y., Min X. B., Jiang S. P., Wang S. Y., Chem. ⁃Eur. J., 2020, 26(18), 3906—3929 |
26 | Jaryal V. B., Villa A., Gupta N., ACS Sustainable Chem. Eng., 2023, 11(41), 14841—14865 |
27 | Dai L. M., Xue Y. H., Qu L. T., Choi H. J., Baek J. B., Chem. Rev., 2015, 115(11), 4823—4892 |
28 | Gao S. Y., Wei X. J., Fan H., Li L. Y., Geng K. R., Wang J. J., Nano Energy, 2015, 13, 518—526 |
29 | Li Q. Z., Zheng J. J., Dang J. S., Zhao X., ChemPhysChem, 2015, 16(2), 390—395 |
30 | Wang Y., Jiao M. G., Song W., Wu Z. J., Carbon, 2017, 114, 393—401 |
31 | Yang S. W., Cheng Y. X., Liu H. L., Huang X. R., Diamond Relat. Mater., 2022, 124, 108954 |
32 | Chen X. H., Ye P. C., Wang H. Y., Huang H., Zhong Y. J., Hu Y., Adv. Funct. Mater., 2023, 33(12), 2212915 |
33 | Lu Y. Y., Li Z. W., Bai Z. Y., Mi H. Y., Ji C. C., Pang H., Yu C., Qiu J. S., Nano Energy, 2019, 66, 104132 |
34 | Fu Y. Y., Cao C. C., Song W. R., Li B., Sun X. Z., Wang Z. X., Fan L. Q., Chen J., Chem. ⁃Eur. J., 2024, 30(28), e202400252 |
35 | Kang Y. M., Wang W., Li J. M., Imhanria S., Hao Y. X., Lei Z. Q., J. Power Sources, 2021, 493, 229665 |
36 | Lu Z. Y., Wang J., Huang S. F., Hou Y. L., Li Y. G., Zhao Y. P., Mu S. C., Zhang J. J., Zhao Y. F., Nano Energy, 2017, 42, 334—340 |
37 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2013 |
38 | Becke A. D., J. Chem. Phys., 1993, 98(7), 5648—5652 |
39 | Lee C., Yang W. T., Parr R. G., Phys. Rev. B, 1988, 37(2), 785—789 |
40 | Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys., 2010, 132(15), 154104 |
41 | Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., J. Phys. Chem. B, 2004, 108, 17886—17892 |
42 | Chen X., Chang J. B., Ke Q., Carbon, 2018, 126, 53—57 |
43 | Rossmeisl J., Logadottir A., Nørskov J. K., Chem. Phys., 2005, 319, 178—184 |
44 | Man I. C., Su H. Y., Calle⁃Vallejo F., Hansen H. A., Martínez J. I., Inoglu N. G., Kitchin J., Jaramillo T. F., Nørskov J. K., Rossmeisl J., ChemCatChem, 2011, 3(7), 1159—1165 |
45 | Medford A. J., Vojvodic A., Hummelshøj J. S., Voss J., Abild⁃Pedersen F., Studt F., Bligaard T., Nilsson A., Nørskov J. K., J. Catal., 2015, 328, 36—42 |
[1] | HUANG Zhiyao, LI Li, XU Huaqing, YANG Yifan, WEI Yaoyao, LIU Guokui, XIA Qiying. First-principles Study on the Catalysis of OER/ORR by N-doped Graphene with Defects [J]. Chem. J. Chinese Universities, 2025, 46(2): 20240430. |
[2] | HE Jun, ZHU Aoyang, WEI Yuchen, ZHU Yiquan, JIANG Li, HE Xiaojun. Preparation and Zinc Storage Properties of Three-dimensional Nitrogen-doped Hierarchical Porous Carbon Nanosheets [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240099. |
[3] | CHEN Junjie, ZHANG Ruidan, CHEN Yue. First-principles Study of Potential Applications of Monolayer GeTe in Lithium/sodium/potassium Ion Batteries [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240148. |
[4] | ZHANG Shuo, ZHAO Liuyang, HUANG Hao, WU Aimin, LI Aikui. Oxygen Framework Mechanism of Layered Lithium-rich Manganese-based Materials Stabilized by High-valent Element Mo Based on First-principles Calculations [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240035. |
[5] | CHEN Rong, WEN Liangying, YUE Dong, YANG Zhongqing. Density Functional Theory Analysis of Coadsorption Behavior of Cl2 and O2 on TiC(100) Surface [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230497. |
[6] | CHEN Qingqing, LI Jiangtao, HUANG Xinrong, GU Fang, WANG Haijun. Excess Entropy of Janus Particles Immersed in Hydrogen Bonding Fluids [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230443. |
[7] | WANG Xin, QI Jinyang, YANG Ruijie, SONG Zhiguo, WANG Min. Synthesis, Characterization and Catalytic Property of the Cu(II) Complex Based on Benzene Sulfonic Acid Ligand [J]. Chem. J. Chinese Universities, 2024, 45(10): 20240297. |
[8] | FU Zhongheng, CHEN Xiang, YAO Nan, YU Legeng, SHEN Xin, ZHANG Rui, ZHANG Qiang. Research Advances in Transport Mechanism of Lithium Ions in Solid Electrolytes [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220703. |
[9] | WANG Jun, DU Shiqian, TAO Li. Recent Progress of Catalysts in the High Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220722. |
[10] | ZHANG Xiaoyu, QU Gan, XUE Dongping, YAN Wenfu, ZHANG Jianan. Recent Process of Carbon-based Catalysts for the Production of H2O2 by Electrocatalytic Oxygen Reduction: Strategies, Calculation and Practical Applications [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220775. |
[11] | LI Ruisong, MIAO Zhengpei, LI Jing, TIAN Xinlong. Research Progress on Hollow Precious Metal-based Nanostructures for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220730. |
[12] | LI Xuan, QI Shuai, ZHOU Weiliang, LI Xiaojie, JING Lingyan, FENG Chao, JIANG Xingxing, YANG Hengpan, HU Qi, HE Chuanxin. Advances in Nanofiber-based Electrocatalysts for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220770. |
[13] | BAO Chunzhu, XIANG Zhonghua. Pyrolysis-free Strategy of Covalent Organic Polymers-based Oxygen Reduction Electrocatalytic Materials [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220715. |
[14] | PENG Xinzhe, GE Jiaoyang, WANG Fangli, YU Guojing, RAN Xueqin, ZHOU Dong, YANG Lei, XIE Linghai. Theoretical Study on the Strain Energy and Reorganization Energy Based on Planar Grid Benzothiophene [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220313. |
[15] | ZHANG Haiping, KONG Xue, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Methane C—H Activation by Cyclo[18] Carbon-based Single-atom Transition Metal(Os, Ir) [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||