Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (5): 20240035.doi: 10.7503/cjcu20240035
• Physical Chemistry • Previous Articles Next Articles
ZHANG Shuo1, ZHAO Liuyang1, HUANG Hao1(), WU Aimin1, LI Aikui2
Received:
2024-01-19
Online:
2024-05-10
Published:
2024-03-18
Contact:
HUANG Hao
E-mail:huanghao@dlut.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Shuo, ZHAO Liuyang, HUANG Hao, WU Aimin, LI Aikui. Oxygen Framework Mechanism of Layered Lithium-rich Manganese-based Materials Stabilized by High-valent Element Mo Based on First-principles Calculations[J]. Chem. J. Chinese Universities, 2024, 45(5): 20240035.
Atom | Bader charge(pristine)/e | Bader charge(Mo⁃doped)/e |
---|---|---|
O1 | 1.18 | 1.22 |
O2 | 1.12 | 1.20 |
O3 | 1.16 | 1.18 |
O4 | 1.17 | 1.18 |
O5 | 1.03 | 1.15 |
O6 | 1.09 | 1.15 |
Average bader charge | 1.13 | 1.18 |
Table 1 Bader charge of O atoms in MnO6 of Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.56Ni0.2Mo0.04O2
Atom | Bader charge(pristine)/e | Bader charge(Mo⁃doped)/e |
---|---|---|
O1 | 1.18 | 1.22 |
O2 | 1.12 | 1.20 |
O3 | 1.16 | 1.18 |
O4 | 1.17 | 1.18 |
O5 | 1.03 | 1.15 |
O6 | 1.09 | 1.15 |
Average bader charge | 1.13 | 1.18 |
Oxygen vacancy | Ef(Pristine)/eV | Ef(Mo⁃doped)/eV | Oxygen vacancy | Ef(Pristine)/eV | Ef(Mo⁃doped)/eV |
---|---|---|---|---|---|
Ⅰ | 2.40 | 3.51 | Ⅴ | 1.83 | 3.51 |
Ⅱ | 1.55 | 2.12 | Ⅵ | 1.95 | 2.12 |
Ⅲ | 0.85 | 2.41 | Ⅶ | 0.95 | 1.52 |
Ⅳ | 1.75 | 2.83 |
Table 2 Oxygen vacancy formation energy corresponding to different oxygen vacancy sites*
Oxygen vacancy | Ef(Pristine)/eV | Ef(Mo⁃doped)/eV | Oxygen vacancy | Ef(Pristine)/eV | Ef(Mo⁃doped)/eV |
---|---|---|---|---|---|
Ⅰ | 2.40 | 3.51 | Ⅴ | 1.83 | 3.51 |
Ⅱ | 1.55 | 2.12 | Ⅵ | 1.95 | 2.12 |
Ⅲ | 0.85 | 2.41 | Ⅶ | 0.95 | 1.52 |
Ⅳ | 1.75 | 2.83 |
Sample | Path | dO—O/nm | Ea/eV | Sample | Path | dO—O/nm | Ea/eV |
---|---|---|---|---|---|---|---|
Pristine | 1⁃2 | 0.2619 | 0.77 | Mo⁃doped | 1⁃2 | 0.2631 | 0.65 |
2⁃3 | 0.2619 | 0.55 | 2⁃3 | 0.2631 | 0.42 | ||
3⁃4 | 0.2619 | 0.82 | 3⁃4 | 0.2631 | 0.58 |
Table 3 Li slab distance(do—o) of the corresponding path and the activation barrier(Ea) of pristine and Mo-doped systems
Sample | Path | dO—O/nm | Ea/eV | Sample | Path | dO—O/nm | Ea/eV |
---|---|---|---|---|---|---|---|
Pristine | 1⁃2 | 0.2619 | 0.77 | Mo⁃doped | 1⁃2 | 0.2631 | 0.65 |
2⁃3 | 0.2619 | 0.55 | 2⁃3 | 0.2631 | 0.42 | ||
3⁃4 | 0.2619 | 0.82 | 3⁃4 | 0.2631 | 0.58 |
1 | Chen H., Hu Q., Huang Z., Wang Z., Guo H., Li X., Ceram. Int., 2016, 42(1), 263—269 |
2 | He Z., Wang Z., Chen H., Huang Z., Li X., Guo H., Wang R., J. Power Sources, 2015, 299, 334—341 |
3 | Liu Y., Wang Q. L., Xing Q. W., Tian C. G., Yan Y. S., Ming R. D., Ai C., Ionics, 2015, 21(10), 2725—2733 |
4 | Luo K., Roberts M. R., Hao R., Guerrini N., Pickup D.M., Liu Y. S., Edström K., Guo J., Chadwick A. V., Duda L. C., Bruce P. G., Nature Chem., 2016, 8(7), 684—691 |
5 | Armstrong A. R., Holzapfel M., Novák P., Johnson C. S., Kang S. H., Thackeray M. M., Bruce P. G., J. Am. Chem. Soc., 2006, 128(26), 8694—8698 |
6 | Yu D. Y. W., Yanagida K., Kato Y., Nakamura H., J. Electrochem. Soc., 2009, 156(6), A417 |
7 | Li B., Xia D., Adv. Mater., 2017, 29(48), 1701054 |
8 | Cui S. L., Gao M. Y., Li G. R., Gao X. P., Adv. Energy Mater., 2022, 12(4), 2003885 |
9 | Zhuo H., Zhang A., Huang X., Wang J., Zhuang W., Inorg. Chem. Frontiers, 2021, 8(21), 4590—4609 |
10 | He W., Guo W., Wu H., Lin L., Liu Q., Han X., Xie Q., Liu P., Zheng H., Wang L., Yu X., Peng D. L., Adv. Mater., 2021, 33(50), 2005937 |
11 | Yin Z., Zhu H., Huang Y., Luo D., Ren Y., Lan S., Liu Q., J. Mater. Chem. A, 2022, 10(37), 19387—19411 |
12 | Mondal S., Zhang Z., Islam A. N. M. N., Andrawis R., Gamage S., Aghamiri N. A., Wang Q., Zhou H., Rodolakis F., Tran R., Kaur J., Chen C., Ong S. P., Sengupta A., Abate Y., Roy K., Ramanathan S., Adv. Intelligent Systems, 2022, 4(10), 2200069 |
13 | Mondal S., Venkataraman V., Appl. Phys. Lett., 2019, 114(17), 173502 |
14 | Mondal S., Paul T., Ghosh A., Venkataraman V., IEEE Electron Device Lett., 2020, 41(5), 717—720 |
15 | Chen L. D., Zou W., Wu L., Xia F. J., Hu Z. Y., Li Y., Su B. L., Chem. J. Chinese Universities, 2020, 41(6), 1329—1336 |
陈良丹, 邹伟, 吴亮, 夏凡杰, 胡执一, 李昱, 苏宝连. 高等学校化学学报, 2020, 41(6), 1329—1336 | |
16 | Qiu J. X., Jiang Q., Gao Y. K., Peng J. Q., Duan Z. H., Lu X. Y., Chem. J. Chinese Universities, 2018, 39(10), 2238—2244 |
邱家欣, 江奇, 高艺珂, 彭俊棋, 段志虹, 卢晓英. 高等学校化学学报, 2018, 39(10), 2238—2244 | |
17 | Yang J. Y., Li Y. J., Lu D., Chen Y. F., Sun W. W., Zheng C. M., Chem. J. Chinese Universities, 2019, 40(7), 1495—1500 |
杨金戈, 李宇杰, 陆地, 陈宇方, 孙巍巍, 郑春满. 高等学校化学学报, 2019, 40(7), 1495—1500 | |
18 | Jiang W., Zhang C., Feng Y., Wei B., Chen L., Zhang R., Ivey D. G., Wang P., Wei W., Energy Storage Mater., 2020, 32, 37—45 |
19 | Nayak P. K., Grinblat J., Levi M., Levi E., Kim S., Choi J. W., Aurbach D., Adv. Energy Mater., 2016, 6(8), 1502398 |
20 | Ha M., Hajibabaei A., Kim D. Y., Singh A. N., Yun J., Myung C. W., Kim K. S., Adv. Energy Mater., 2022, 12(30), 2201497 |
21 | Choi A., Lim J., Kim H. J., Jung S. C., Lim H. W., Kim H., Kwon M. S., Han Y. K., Oh S. M., Lee K. T., Adv. Energy Mater., 2018, 8(11), 1702514 |
22 | Yu R., Wang X., Fu Y., Wang L., Cai S., Liu M., Lu B., Wang G., Wang D., Ren Q., J. Mater. Chem. A, 2016, 4(13), 4941—4951 |
23 | Wang Y., Yu W., Zhao L., Wu A., Li A., Dong X., Huang H., Electrochimica Acta, 2023, 462, 142664 |
24 | Nie L., Wang Z., Zhao X., Gao T., Zhang Y., Dong L., Kim F., Nano Lett., 2021, 21(19), 8370—8377 |
25 | Chen J., Zou G., Deng W., Huang Z., Gao X., Liu C., Yin S., Liu H., Deng X., Tian Y., Adv. Functional Mater., 2020, 30(46), 2004302 |
26 | Yu W., Wang Y., Wu A., Li A., Qiu Z., Dong X., Dong C., Huang H., Green Energy Environment, 2024, 9(1), 138—151 |
27 | Dong S., Zhou Y., Hai C., Zeng J., Sun Y., Shen Y., Li X., Ren X., Sun C., Zhang G., J. Power Sources, 2020, 462, 228185 |
28 | Gao Y., Ma J., Wang X., Lu X., Bai Y., Wang Z., Chen L., J. Mater. Chem. A, 2014, 2(13), 4811—4818 |
29 | Yan H., Li B., Yu Z., Chu W., Xia D., J. Phys. Chem. C, 2017, 121(13), 7155—7163 |
30 | Yan H. J., Li B., Jiang N., Xia D. G., Acta Phys.⁃Chim. Sin., 2017, 33(9), 1781—1788 |
鄢慧君, 李彪, 蒋宁, 夏定国. 物理化学学报, 2017, 33(9), 1781—1788 | |
31 | Wang Z. Q., Chen Y. C., Ouyang C. Y., Phys. Lett. A, 2014, 378(32/33), 2449—2452 |
32 | Li B., Yan H., Ma J., Yu P., Xia D., Huang W., Chu W., Wu Z., Adv. Functional Mater., 2014, 24(32), 5112—5118 |
33 | Dianat A., Seriani N., Bobeth M., Cuniberti G., J. Mater. Chem. A, 2013, 1(32), 9273—9280 |
34 | Park N. Y., Kim S. B., Kim M. C., Han S. M., Kim D. H., Kim M. S., Sun Y. K., Adv. Energy Mater., 2023, 13(34), 2301530 |
35 | Li Q., Ning D., Wong D., An K., Tang Y., Zhou D., Schuck G., Chen Z., Zhang N., Liu X., Nature Commun., 2022, 13(1), 1123 |
36 | Yu W., Zhao L., Wang Y., Huang H., Zhang S., Li H., Liu X., Dong X., Wu A., Li A., J. Alloys Compounds, 2023, 947, 169481 |
37 | Paulus A., Hendrickx M., Mayda S., Batuk M., Reekmans G., Holst M., Elen K., Abakumov A. M., Adriaensens P., Lamoen D., Partoens B., Hadermann J., Van Bael M. K., Hardy A., ACS Appl. Energy Mater., 2023, 6(13), 6956—6971 |
38 | Moradi Z., Heydarinasab A., Pajoum Shariati F., Int. J. Quantum Chem., 2020, 121(4), e26458 |
39 | Yang K., Geng M. M., Ye J., Gao Y. X., Zhong J. J., Electronic Components Mater., 2019, 38(3), 7—15 |
杨凯, 耿萌萌, 叶俊, 高运兴, 钟健健. 电子元件与材料, 2019, 38(3), 7—15 | |
40 | Kong W., Wong D., An K., Zhang J., Chen Z., Schulz C., Xu Z., Liu X., Adv. Functional Mater., 2022, 32(31), 2202679 |
41 | Seo D. H., Lee J., Urban A., Malik R., Kang S., Ceder G., Nature Chem., 2016, 8(7), 692—697 |
42 | Guo W., Zhang Y., Lin L., Liu Y., Fan M., Gao G., Wang S., Sa B., Lin J., Luo Q., Qu B., Wang L., Shi J., Xie Q., Peng D. L., Small, 2023, 19(21), 2300175 |
43 | Wang L., Maxisch T., Ceder G., Chem. Mater., 2007, 19(3), 543—552 |
44 | Lai Y., Xie H., Li P., Li B., Zhao A., Luo L., Jiang Z., Fang Y., Chen S., Ai X., Adv. Mater., 2022, 34(47), 2206039 |
45 | Kang K., Ceder G., Phys. Rev. B, 2006, 74(9), 094105 |
46 | Ning F., Xu B., Shi J., Wu M., Hu Y., Ouyang C., J. Phys. Chem. C, 2016, 120(33), 18428—18434 |
47 | Geng K. Q., Yang M. Q., Meng J. X., Zhou L. F., Wang Y. Q., Dmytro S., Zhang Q., Zhong S. W., Ma Q. X., Tungsten, 2022, 4(4), 323—335 |
[1] | CHEN Rong, WEN Liangying, YUE Dong, YANG Zhongqing. Density Functional Theory Analysis of Coadsorption Behavior of Cl2 and O2 on TiC(100) Surface [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230497. |
[2] | ZHANG Jinkai, LI Jiali, LIU Xiaoming, MU Ying. Application of Covalent Organic Frameworks in High-performance Lithium-ion Battery Anode Materials [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230523. |
[3] | CHEN Qingqing, LI Jiangtao, HUANG Xinrong, GU Fang, WANG Haijun. Excess Entropy of Janus Particles Immersed in Hydrogen Bonding Fluids [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230443. |
[4] | LI Wei, CHEN Chen, LIU Dan, WANG Tao. Hierarchical Aggregates of Non-fullerene Electron Acceptors [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230160. |
[5] | FU Zhongheng, CHEN Xiang, YAO Nan, YU Legeng, SHEN Xin, ZHANG Rui, ZHANG Qiang. Research Advances in Transport Mechanism of Lithium Ions in Solid Electrolytes [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220703. |
[6] | HE Ruhan, LI Hao, HAN Fang, CHEN Aoyuan, MAI Liqiang, ZHOU Liang. Research Progresses on Interface Engineering of Si-Based Anodes for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220748. |
[7] | PENG Xinzhe, GE Jiaoyang, WANG Fangli, YU Guojing, RAN Xueqin, ZHOU Dong, YANG Lei, XIE Linghai. Theoretical Study on the Strain Energy and Reorganization Energy Based on Planar Grid Benzothiophene [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220313. |
[8] | ZHANG Haiping, KONG Xue, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Methane C—H Activation by Cyclo[18] Carbon-based Single-atom Transition Metal(Os, Ir) [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230259. |
[9] | ZHOU Hui, ZHU Shuaibo, WANG Jitong, QIAO Wenming, YU Zijian, ZHANG Yinxu. Construction and Electrochemical Properties of Si/rGO@CN as Anode Materials for High-performance Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230354. |
[10] | FENG Linyan, HU Xiaobo, YAN Miao, MIAO Changqing, CHEN Rui, GUO Jinchang, WANG Yingjin. Theoretical Study of MB8C4(M=Ca, Sr, Ba) Molecular Wheels Clusters with Dodeca-coordination Number in Plane [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230281. |
[11] | BI Ruyi, ZHAO Jilu, WANG Jiangyan, YU Ranbo, WANG Dan. Synthesis and Lithium-ion Battery Performance of Hollow Multishelled CoFe2O4 [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220453. |
[12] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[13] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[14] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[15] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||