Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (7): 20240148.doi: 10.7503/cjcu20240148
• Physical Chemistry • Previous Articles Next Articles
CHEN Junjie1(), ZHANG Ruidan2, CHEN Yue2
Received:
2024-03-29
Online:
2024-07-10
Published:
2024-05-08
Contact:
CHEN Junjie
E-mail:202051000007@jmu.edu.cn
Supported by:
CLC Number:
TrendMD:
CHEN Junjie, ZHANG Ruidan, CHEN Yue. First-principles Study of Potential Applications of Monolayer GeTe in Lithium/sodium/potassium Ion Batteries[J]. Chem. J. Chinese Universities, 2024, 45(7): 20240148.
Ion | Ead/eV | q/e | h/nm | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | |
Li+ | -0.636 | -0.611 | -0.611 | 1.05 | 1.03 | 1.04 | 0.3107 | 0.2519 | 0.2675 |
Na+ | -0.740 | -0.793 | -0.794 | 0.44 | 0.45 | 0.45 | 0.3745 | 0.2912 | 0.2974 |
K+ | -1.260 | -0.940 | -1.248 | 0.60 | 0.58 | 0.59 | 0.4120 | 0.3254 | 0.3496 |
Table 1 Adsorption energy(Ead), charge transfer(q) and vertical distance(h) of lithium, sodium and potassium ions at different adsorption sites(A, B, C) on monolayer GeTe
Ion | Ead/eV | q/e | h/nm | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | |
Li+ | -0.636 | -0.611 | -0.611 | 1.05 | 1.03 | 1.04 | 0.3107 | 0.2519 | 0.2675 |
Na+ | -0.740 | -0.793 | -0.794 | 0.44 | 0.45 | 0.45 | 0.3745 | 0.2912 | 0.2974 |
K+ | -1.260 | -0.940 | -1.248 | 0.60 | 0.58 | 0.59 | 0.4120 | 0.3254 | 0.3496 |
System | ||||
---|---|---|---|---|
GeTe | -4.83 | -3.29 | 1.54 | |
Li+@GeTe | -4.93 | -3.67 | 1.26 | -18.2 |
Na+@GeTe | -4.84 | -3.78 | 1.06 | -31.2 |
K+@GeTe | -4.79 | -3.53 | 1.26 | -18.2 |
Table 2 Energies of HOMO, LUMO and LUMO-HOMO gap(Eg )
System | ||||
---|---|---|---|---|
GeTe | -4.83 | -3.29 | 1.54 | |
Li+@GeTe | -4.93 | -3.67 | 1.26 | -18.2 |
Na+@GeTe | -4.84 | -3.78 | 1.06 | -31.2 |
K+@GeTe | -4.79 | -3.53 | 1.26 | -18.2 |
1 | Dincer I., Acar C., Int. J. Energy Res., 2015, 39(5), 585 |
2 | Kittner N., Lill F., Kammen D. M., Nat. Energy, 2017, 2, 17125 |
3 | Li M., Lu J., Chen Z. W., Amine K., Adv. Mater., 2018, 30(33), 1800561 |
4 | Bruce P. G., Scrosati B., Tarascon J. M., Angew. Chem. Int. Ed., 2008, 47(16), 2930—2946 |
5 | Goodenough J. B., Park K. S., J. Am. Chem. Soc., 2013, 135(4), 1167—1176 |
6 | Tarascon J. M., Nat. Chem., 2010, 2(6), 510 |
7 | Wang Q. H., Xu J. T., Zhang W. C., Mao M. L., Wei Z. X., Wang L., Cui C. Y., Zhu Y. X., Ma J. M., J. Mater. Chem. A, 2018, 6(19), 8815—8838 |
8 | Hosaka T., Kubota K., Hameed A. S., Komaba S., Chem. Rev., 2020, 120(14), 6358—6466 |
9 | Deng J. H., Huang X. L., Gao W., Liu H. D., Xu M. W., Sustain. Energ. Fuels, 2020, 4(9), 4807—4813 |
10 | Kim K. H., Choi J., Hong S. H., Chem. Commun., 2019, 55(22), 3207—3210 |
11 | Xu Y. F., Ding T. J., Sun D. M., Ji X. L., Zhou X. S., Adv. Funct. Mater., 2023, 33(6), 2211290 |
12 | Liu Y. C., Liu X. B., Wang T. S., Fan L. Z., Jiao L. F., Sustain. Energ. Fuels, 2017, 1(5), 986—1006 |
13 | Chen K. T., Tuan H. Y., ACS Nano, 2020, 14(9), 11648—11661 |
14 | Nobuhara K., Nakayam A H., Nose M., Nakanishi S., Iba H., J. Power Sources, 2013, 243, 585—587 |
15 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666—669 |
16 | Hao K. R., Fang L. C., Yan Q. B., Su G., Phys. Chem. Chem. Phys., 2015, 20(15), 9865 |
17 | Souza E. S., Scopel W. L., Miwa R. H., Phys. Chem. Chem. Phys., 2018, 20(26), 17952 |
18 | Mak K. F., Sfeir M. Y., Wu Y., Lui C. H., Misewich J. A., Heinz T. F., Phys. Rev. Lett., 2008, 101(19), 196—199 |
19 | Deng Y. F., Fang C. C., Chen G. H., J. Power Sources, 2016, 304, 81—101 |
20 | Wang S. W., Yang B. C., Chen H. Y., Ruckenstein E., Energy Stor. Mater., 2019, 16, 619—624 |
21 | Liu X., Wen Y. W., Chen Z. Z., Shan B., Chen R., Phys. Chem. Chem. Phys., 2015, 17(25), 16398—16404 |
22 | Tritsaris G. A., Kaxiras E., Meng S., Wang E. G., Nano Lett., 2013, 13(5), 2258—2263 |
23 | Liang P., Cao Y. T., Tai B., Zhang L., Shu H. B., Li F., Chao D. L., Du X. Q., J. Alloys Compd., 2017, 704, 152—159 |
24 | Er D. Q., Li J. W., Naguib M., Gogotsi Y., Shenoy V. B., ACS Appl. Mater. Interfaces, 2014, 6(14), 11173—11179 |
25 | Ares P., Aguilar⁃Galindo F., Rodriguez⁃San⁃Miguel D., Aldave D. A., Díaz⁃Tendero S., Alcamí M., Martín F., Gómez⁃Herrero J., Zamora F., Adv. Mater., 2016, 28(30), 6332—6336 |
26 | Fuller C. S., Severiens J. C., Phys. Rev., 1954, 96, 21—24 |
27 | Yue C., Yu Y. J., Wu Z. G., He X., Wang J. Y., Li J. T., Li C., Wu S. T., Li J., Kang J. Y., Nanoscale, 2014, 6, 1817—1822 |
28 | Lim L. Y., Liu N., Cui Y., Toney M. F., Chem. Mater., 2014, 26, 3739—3746 |
29 | Lu X., Adkins E. R., He Y., Zhong L., Luo L., Mao S. X., Wang C. M., Korgel B. A., Chem. Mater., 2016, 28, 1236—1242 |
30 | Xin S., Yin Y. X., Guo Y. G., Wan L. J., Adv. Mater., 2013, 26, 1261—1265 |
31 | Zhang Y., Zhou Q., Zhu J., Yan Q., Dou S. X., Sun W., Adv. Funct. Mater., 2017, 27, 1702317 |
32 | Zeng L., Zeng W., Jiang Y., Wei X., Li W., Yang C., Zhu Y., Yu Y., Adv. Energy Mater., 2014, 5, 1401377 |
33 | Xu J. T., Ma J. M., Fan Q. H., Guo S. J., Dou S. X., Adv. Mater., 2017, 29(28), 1606454 |
34 | Nam K. H., Choi J. H., Park C. M., J. Electrochem. Soc., 2017, 164, A2056—A2064 |
35 | Seo J. U., Seong G. K., Park C. M., Sci. Rep., 2015, 5, 7969 |
36 | Herman F., Kortum R. L., Ortenburger I. B., Dyke J. P. V., J. Phys. Colloq., 1968, 29, c4—c62 |
37 | Tung Y. W., Cohen M. L., Phys. Rev., 1969, 180, 823—826 |
38 | Lebedev A. I., Sluchinskaya I. A., Demin V. N., Munro I. H., Phase Transit., 1997, 60, 67—77 |
39 | Sung G. K., Park C. M., J. Mater. Chem. A, 2017, 5, 5685—5689 |
40 | Qu B., Ma C., Ji G., Xu C., Xu J., Meng Y. S., Wang T., Lee J. Y., Adv. Mater., 2014, 26, 3854—3859 |
41 | Nam K. H., Sung G. K., Choi J. H., Youn J. S., Jeon K. J., Park C. M., J. Mater. Chem. A, 2019, 7, 3278—3288 |
42 | Sung G. K., Nam K. H., Choi J. H., Park C. M., Electrochim. Acta, 2020, 331, 135393 |
43 | Zeng T. B., Feng D., Peng Q. M., Liu Q., Xi G. C., Chen G., ACS Appl. Mater. Interfaces, 2021, 13(13), 15178—15189 |
44 | Liu X. H., Ye Q. T., Yao R. Z., Chen B., Liang W., Liu Y. S., Liu Y. P., Chen D. M., Wei Y. Q., Li D., Chen Y., Energy Stor. Mater., 2023, 63, 103039 |
45 | Singh A. K., Hennig R. G., Appl. Phys. Lett., 2014, 105(4), 042103 |
46 | Zhang P. P., Zhao F. L., Long P., Wang Y., Yue Y. C., Liu X. Y., Feng Y. Y., Li R. J., Hu W. P., Li Y., Feng W., Nanoscale, 2018, 10(34), 15989—15997 |
47 | Becke A. D., Phys. Rev. A, 1988, 38(6), 3098—3100 |
48 | Avramov P. V., Kudin K. N., Scuseria G. E., Chem. Phys. Lett., 2003, 370(5), 597—601 |
49 | Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77(18), 3865 |
50 | Halgren T. A., Lipscomb W. N., Chem. Phys. Lett., 1977, 49(2), 225—232 |
51 | Kusumi A., Sako Y., Yamamoto M., Biophys. J., 1993, 65, 2021—2040 |
52 | Wei Y. Q., Huang L., Chen J. J., Guo Y. P., Wang S. Q., Li H. Q., Zhai T. Y., ACS Appl. Mater. Interfaces, 2019, 11, 41374—41382 |
53 | Ge G. X., Zhang Y. W., Yan H. X., Yang J. M., Zhou L., Sui X. J., Appl. Surf. Sci., 2021, 538, 148009 |
54 | Guo L., Qi C. W., Zheng X. W., Zhang R. H., Shen X., Kaya S., RSC Adv., 2017, 7, 29042—29050 |
55 | Yu T., Zhao Z. Y., Liu L. L., Zhang S. T., Xu H. Y., Yang G. C., J. Am. Chem. Soc., 2018, 140(18), 5962—5968 |
56 | Shen Y. Q., Ma Y. Y., Wu S. Y., Zhou Z. X., Comput. Mater. Sci., 2019, 170, 109200 |
57 | Wang Y. W., Tian W., Zhang H. J., Wang Y., Phys. Chem. Chem. Phys., 2021, 23(21), 12288—12295 |
58 | Zhang Y., Shi C. J., Brennecke J. F., J. Phys. Chem. B, 2014, 118(23), 6250—6255 |
59 | Chen J. H., He L. M., Wang R. L., J. Phys. Chem. A, 2013, 117(24), 5132—5139 |
60 | Hosseinian A., Soleimani⁃amiri S., Arshadi S., Vessally E., Edjlali L., Phys. Lett. A, 2017, 381, 2010—2015 |
61 | Karimi N., Zarrabeitia M., Mariani A., Gatti D., Varzi A., Passerini S., Adv. Energy Mater., 2021, 11(4), 2003521 |
62 | Wu F., Dong R. Q., Bai Y., Li Y., Chen G. H., Wang Z. H., Wu C., ACS Appl. Mater. Interfaces, 2018, 10(25), 21335—21342 |
63 | Li F., Qu Y., Zhao M., J. Mater. Chem. A, 2016, 4, 8905—8912 |
64 | Zhou Y., Zhao M., Chen Z. W., Shi X. M., Jiang Q., Phys. Chem. Chem. Phys., 2018, 20, 30290—30296 |
65 | Jiang H., Zhao T., Ren Y., Zhang R., Wu M., Sci. Bull., 2017, 62, 572—578 |
66 | Su J., Pei Y., Yang Z., Wang X., RSC Adv., 2014, 4, 43183—43188 |
67 | Putungan D. B., Lin S. H., Kuo J. L., ACS Appl. Mater. Interfaces, 2016, 8, 18754—18762 |
[1] | HE Jun, ZHU Aoyang, WEI Yuchen, ZHU Yiquan, JIANG Li, HE Xiaojun. Preparation and Zinc Storage Properties of Three-dimensional Nitrogen-doped Hierarchical Porous Carbon Nanosheets [J]. Chem. J. Chinese Universities, 2024, 45(7): 133. |
[2] | ZHANG Shuo, ZHAO Liuyang, HUANG Hao, WU Aimin, LI Aikui. Oxygen Framework Mechanism of Layered Lithium-rich Manganese-based Materials Stabilized by High-valent Element Mo Based on First-principles Calculations [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240035. |
[3] | CHEN Rong, WEN Liangying, YUE Dong, YANG Zhongqing. Density Functional Theory Analysis of Coadsorption Behavior of Cl2 and O2 on TiC(100) Surface [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230497. |
[4] | ZHANG Jinkai, LI Jiali, LIU Xiaoming, MU Ying. Application of Covalent Organic Frameworks in High-performance Lithium-ion Battery Anode Materials [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230523. |
[5] | CHEN Qingqing, LI Jiangtao, HUANG Xinrong, GU Fang, WANG Haijun. Excess Entropy of Janus Particles Immersed in Hydrogen Bonding Fluids [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230443. |
[6] | HE Ruhan, LI Hao, HAN Fang, CHEN Aoyuan, MAI Liqiang, ZHOU Liang. Research Progresses on Interface Engineering of Si-Based Anodes for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220748. |
[7] | FU Zhongheng, CHEN Xiang, YAO Nan, YU Legeng, SHEN Xin, ZHANG Rui, ZHANG Qiang. Research Advances in Transport Mechanism of Lithium Ions in Solid Electrolytes [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220703. |
[8] | PENG Xinzhe, GE Jiaoyang, WANG Fangli, YU Guojing, RAN Xueqin, ZHOU Dong, YANG Lei, XIE Linghai. Theoretical Study on the Strain Energy and Reorganization Energy Based on Planar Grid Benzothiophene [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220313. |
[9] | HU Shiying, SHEN Jiayan, HAN Junshan, HAO Tingting, LI Xing. Preparation of CoO Nanoparticles/Hollow Graphene Nanofiber Composites and Its Electrochemical Performances [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220462. |
[10] | ZHANG Haiping, KONG Xue, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Methane C—H Activation by Cyclo[18] Carbon-based Single-atom Transition Metal(Os, Ir) [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230259. |
[11] | ZHOU Hui, ZHU Shuaibo, WANG Jitong, QIAO Wenming, YU Zijian, ZHANG Yinxu. Construction and Electrochemical Properties of Si/rGO@CN as Anode Materials for High-performance Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230354. |
[12] | FENG Linyan, HU Xiaobo, YAN Miao, MIAO Changqing, CHEN Rui, GUO Jinchang, WANG Yingjin. Theoretical Study of MB8C4(M=Ca, Sr, Ba) Molecular Wheels Clusters with Dodeca-coordination Number in Plane [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230281. |
[13] | ZHANG Lingling, DONG Huanhuan, HE Xiangxi, LI Li, LI Lin, WU Xingqiao, CHOU Shulei. Progress of Hollow Carbon Materials as Anode for Sodium-ion Battery [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220620. |
[14] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[15] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||