Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (6): 20240416.doi: 10.7503/cjcu20240416
• Review • Previous Articles Next Articles
WANG Xin1,2, WANG Yu1, MU Fumao1, YAN Lingpeng1(), WANG Zhenguo2, YANG Yongzhen3(
)
Received:
2024-09-02
Online:
2025-06-10
Published:
2024-10-14
Contact:
YANG Yongzhen
E-mail:yanlingpeng@tyut.edu.cn;yangyongzhen@tyut.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Xin, WANG Yu, MU Fumao, YAN Lingpeng, WANG Zhenguo, YANG Yongzhen. Applications and Prospects of Carbon Dots in Interface Engineering of Organic Solar Cells[J]. Chem. J. Chinese Universities, 2025, 46(6): 20240416.
Functionalization method | Type | Property regulation | Advantage | Problem | Application scope |
---|---|---|---|---|---|
Doping | Non⁃metallic atoms doping | Conductivity, energy structure, QY, hydrophilicity/hydrophobicity, chemical stability | Improved fluorescence performance, improved electrical performance, enhanced stability, expansion of application areas, convenient preparation method | Blending uniformity problem, control of blending concentration, defects in blending introduction, expensive price of rare metals, difficult to accurately control the doping amount and doping position of heteroatoms | Optoelectronic devices, photocatalysis, sensing, electrocatalysis, drug delivery |
Metal atoms doping | Conductivity, energy structure, charge transfer capability, QY, active site density | ||||
Co⁃doping | Luminescence properties, absorption spectra, conductivity, carrier mobility, stability | ||||
Surface modification | Covalent modification | Luminescence performance, surface property, multi functionality, che⁃mical stability | Improved fluorescence performance, improved stability and solubility, regulation of surface charge and polarity | Uniformity and stability of modification, complexity of modification process, problem of scale preparation | Optoelectronic devices, fluorescent probes and fluorescent imaging, bioimaging and biosensors, drug delivery |
Non covalent modification | Optical/electrical property regulation, stability, solubility and dispersibility |
Table 1 Summary of different functionalization methods for CDs
Functionalization method | Type | Property regulation | Advantage | Problem | Application scope |
---|---|---|---|---|---|
Doping | Non⁃metallic atoms doping | Conductivity, energy structure, QY, hydrophilicity/hydrophobicity, chemical stability | Improved fluorescence performance, improved electrical performance, enhanced stability, expansion of application areas, convenient preparation method | Blending uniformity problem, control of blending concentration, defects in blending introduction, expensive price of rare metals, difficult to accurately control the doping amount and doping position of heteroatoms | Optoelectronic devices, photocatalysis, sensing, electrocatalysis, drug delivery |
Metal atoms doping | Conductivity, energy structure, charge transfer capability, QY, active site density | ||||
Co⁃doping | Luminescence properties, absorption spectra, conductivity, carrier mobility, stability | ||||
Surface modification | Covalent modification | Luminescence performance, surface property, multi functionality, che⁃mical stability | Improved fluorescence performance, improved stability and solubility, regulation of surface charge and polarity | Uniformity and stability of modification, complexity of modification process, problem of scale preparation | Optoelectronic devices, fluorescent probes and fluorescent imaging, bioimaging and biosensors, drug delivery |
Non covalent modification | Optical/electrical property regulation, stability, solubility and dispersibility |
Application | Device structure | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|
ETL | ITO/PEDOT∶PSS/PCDTBT∶PC71BM/GQDs⁃TMA/Al | 0.91 | 10.84 | 71.11 | 7.01 | [ |
ITO/PEDOT∶PSS /PTB7⁃Th∶PC71BM/C⁃CQDs/Al | 0.79 | 16.23 | 64.00 | 8.23 | [ | |
ITO/PEDOT∶PSS/PCDTBT∶PC71BM/GQDs⁃NI/Al | 0.93 | 10.98 | 73.39 | 7.49 | [ | |
ITO/CDs/PM6∶Y6/MoO3/Al | 0.830 | 24.52 | 75.89 | 15.41 | [ | |
ITO/CDs/PM6∶BTP⁃eC9/MoO3/Al | 0.841 | 26.88 | 76.73 | 17.35 | [ | |
HTL | ITO/GQDs/BHJ/LiF/Al | 0.52 | 10.20 | 66.30 | 3.51 | [ |
ITO/GQDs/PTB7⁃Th∶PC71BM/LiF/Al | 0.75 | 15.20 | 69.00 | 7.91 | [ | |
ITO/GQDs/PTB7⁃Th∶PC71BM/LiF/Al | 0.89 | 10.65 | 67.00 | 6.30 |
Table 2 Photovoltaic performance parameters of CDs as ETL or HTL for OSCs
Application | Device structure | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|
ETL | ITO/PEDOT∶PSS/PCDTBT∶PC71BM/GQDs⁃TMA/Al | 0.91 | 10.84 | 71.11 | 7.01 | [ |
ITO/PEDOT∶PSS /PTB7⁃Th∶PC71BM/C⁃CQDs/Al | 0.79 | 16.23 | 64.00 | 8.23 | [ | |
ITO/PEDOT∶PSS/PCDTBT∶PC71BM/GQDs⁃NI/Al | 0.93 | 10.98 | 73.39 | 7.49 | [ | |
ITO/CDs/PM6∶Y6/MoO3/Al | 0.830 | 24.52 | 75.89 | 15.41 | [ | |
ITO/CDs/PM6∶BTP⁃eC9/MoO3/Al | 0.841 | 26.88 | 76.73 | 17.35 | [ | |
HTL | ITO/GQDs/BHJ/LiF/Al | 0.52 | 10.20 | 66.30 | 3.51 | [ |
ITO/GQDs/PTB7⁃Th∶PC71BM/LiF/Al | 0.75 | 15.20 | 69.00 | 7.91 | [ | |
ITO/GQDs/PTB7⁃Th∶PC71BM/LiF/Al | 0.89 | 10.65 | 67.00 | 6.30 |
Application | Device structure | VOC/V | JSC/(mA·cm-2) | F(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|
ETL | ITO/ZnO/CDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 17.59 | 68.27 | 9.01 | [ |
ITO/AZO/CDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 17.65 | 69.50 | 9.20 | ||
ITO/AZO/CDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 18.12 | 70.64 | 10.24 | ||
ITO/TiO2∶CQDs/PCDTBT∶PC71BM/MoO3/Ag | 0.85 | 15.02 | 57.36 | 7.33 | [ | |
ITO/ZnO∶N,S⁃CQDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 17.20 | 68.00 | 9.36 | [ | |
ITO/ZnO∶N⁃CQDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 16.91 | 67.00 | 9.06 | ||
ITO/PEI: CQDs/PTB7⁃Th∶PC71BM/M⁃PEDOT∶PSS/PEI∶CQDs/ PTB7⁃Th∶PC71BM/MoO3/Ag | 1.58 | 11.48 | 66.80 | 12.13 | [ | |
ITO/ZnO/CNDs/PTB7⁃Th∶PC71BM/MoO3/Ag | 0.78 | 16.6 | 72.1 | 9.4 | [ | |
ITO/ZnO/CQDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 19.60 | 66.4 | 9.64 | [ | |
ITO/ZnO/CQDs/P3HT∶PCBM/MoO3/Al | 0.57 | 13.30 | 64.2 | 4.85 | ||
ITO/CD@ZnO/PM6∶IT⁃4F/MoO3/Al | 0.83 | 20.75 | 71.01 | 12.23 | [ | |
ITO/PEI@CQDs/PTB7⁃Th∶PC71BM/MoO3/Ag | 0.78 | 17.75 | 68.30 | 9.47 | [ | |
ITO/ZnO/Ae⁃GQDs⁃Os/PTB7∶PC71BM/MoO3/Al | 0.71 | 16.29 | 52.00 | 5.98 | [ | |
HTL | ITO/PEDOT∶PSS+CDs⁃N/PM6∶Y6/PDINO/Ag | 0.841 | 27.03 | 72.7 | 16.5 | [ |
ITO/ZnO/P3HT∶PC61BM/EDOT∶PSS+CDs/Ag | 0.60 | 12.00 | 53.25 | 3.90 | [ |
Table 3 Device performance of carbon nanomaterials with ETL/HTL modified by CDs
Application | Device structure | VOC/V | JSC/(mA·cm-2) | F(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|
ETL | ITO/ZnO/CDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 17.59 | 68.27 | 9.01 | [ |
ITO/AZO/CDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 17.65 | 69.50 | 9.20 | ||
ITO/AZO/CDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 18.12 | 70.64 | 10.24 | ||
ITO/TiO2∶CQDs/PCDTBT∶PC71BM/MoO3/Ag | 0.85 | 15.02 | 57.36 | 7.33 | [ | |
ITO/ZnO∶N,S⁃CQDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 17.20 | 68.00 | 9.36 | [ | |
ITO/ZnO∶N⁃CQDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 16.91 | 67.00 | 9.06 | ||
ITO/PEI: CQDs/PTB7⁃Th∶PC71BM/M⁃PEDOT∶PSS/PEI∶CQDs/ PTB7⁃Th∶PC71BM/MoO3/Ag | 1.58 | 11.48 | 66.80 | 12.13 | [ | |
ITO/ZnO/CNDs/PTB7⁃Th∶PC71BM/MoO3/Ag | 0.78 | 16.6 | 72.1 | 9.4 | [ | |
ITO/ZnO/CQDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 19.60 | 66.4 | 9.64 | [ | |
ITO/ZnO/CQDs/P3HT∶PCBM/MoO3/Al | 0.57 | 13.30 | 64.2 | 4.85 | ||
ITO/CD@ZnO/PM6∶IT⁃4F/MoO3/Al | 0.83 | 20.75 | 71.01 | 12.23 | [ | |
ITO/PEI@CQDs/PTB7⁃Th∶PC71BM/MoO3/Ag | 0.78 | 17.75 | 68.30 | 9.47 | [ | |
ITO/ZnO/Ae⁃GQDs⁃Os/PTB7∶PC71BM/MoO3/Al | 0.71 | 16.29 | 52.00 | 5.98 | [ | |
HTL | ITO/PEDOT∶PSS+CDs⁃N/PM6∶Y6/PDINO/Ag | 0.841 | 27.03 | 72.7 | 16.5 | [ |
ITO/ZnO/P3HT∶PC61BM/EDOT∶PSS+CDs/Ag | 0.60 | 12.00 | 53.25 | 3.90 | [ |
1 | Zhao J., Yang X., Shao Y., Sun R., Min J., Sci. China Mater., 2024, doi.org/10.1007/s40843-024-3074-6 |
2 | Kini G. P., Jeon S. J., Moon D. K., Adv. Funct. Mater., 2021, 31(15), 2007931 |
3 | Chen X., Qian D., Wang Y., Kirchartz T., Tress W., Yao H., Yuan J., Hülsbeck M., Zhang M., Zou Y., Sun Y., Li Y., Hou J., Inganäs O., Coropceanu V., Bredas J. L., Gao F., Nature Energy, 2021, 6(8), 799—806 |
4 | Mu Q., Feng L., Li Z., Fan K., Li Q., Wei Z., Cheng Y., Xu B., Sol. RRL, 2024, 8(18), 2400486 |
5 | Gong Y., Zou T., Li X., Qin S., Sun G., Liang T., Zhou R., Zhang J., Zhang J., Meng L., Wei Z., Li Y., Energy Environ. Sci., 2024, 17, 6844—6855 |
6 | Liu H., Li Y., Xu S., Zhou Y., Li Z., Adv. Funct. Mater., 2021, 31(50), 2106735 |
7 | Fukuda K., Yu K., Someya T., Adv. Energy Mater., 2020, 10(25), 2000765 |
8 | Yu R., Wu G., Tan Z., J. Energy Chem., 2021, 61, 29—46 |
9 | Gao J., Ma X., Xu C., Wang X., Son J., Jeong S. Y., Zhang Y., Zhang C., Wang K., Niu L., Zhang J., Woo H. Y., Zhang J., Zhang F., Chem. Eng. J., 2022, 428, 129276 |
10 | Guan S., Li Y., Xu C., Yin N., Xu C., Wang C., Wang M., Xu Y., Chen Q., Wang D., Zuo L., Chen H., Adv. Mater., 2024, 36, 2400342 |
11 | Ye L., Xiong Y., Zhang Q., Li S., Wang C., Jiang Z., Hou J., You W., Ade H., Adv. Mater., 2018, 30(8), 1705485 |
12 | Liu Y., Liu B., Ma C., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Liu Y., Meng L., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z., Bo Z., Sci. China Chem., 2022, 65, 224—268 |
13 | Bao L., Zhang Z., Tian Z., Zhang L., Liu C., Lin Y., Qi B., Pang D., Adv. Mater., 2011, 23(48), 5801—5806 |
14 | Kang Z., Lee S. T., Nanoscale, 2019, 11(41), 19214—19224 |
15 | Yeh T. F., Huang W., Chung C., Chiang I. T., Chen L., Chang H., Su W., Cheng C., Chen S., Teng H., J. Phys. Chem. Lett., 2016, 7(11), 2087—2092 |
16 | Zhao W., Li X., Zha H., Yang Y., Yan L., Luo Q., Liu X., Wang H., Ma C. Xu B., Chin. J. Polym. Sci., 2022, 40(1), 7—20 |
17 | Iijima S., Nature, 1991, 354(6348), 56—58 |
18 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666—669 |
19 | Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737 |
20 | Sun Y., Zhou B., Lin Y., Wang W., Fernando K. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., J. Am. Chem. Soc., 2006, 128(24), 7756—7757 |
21 | Cai T., Liu B., Pang E., Ren W., Li S., Hu S., New Carbon Mater., 2020, 35(6), 646—666 |
22 | Lu S., Yang B., SmartMat, 2022, 3(2), 207 |
23 | Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6(23), 1901316 |
24 | Zhao X., Tao S., Yang B., Chinese J. Chem., 2023, 41(17), 2206—2216 |
25 | Kong J., Wei Y., Zhou F., Shi L., Zhao S., Wan M., Zhang X., Molecules, 2024, 29(9), 2002 |
26 | Vercelli B., Coatings, 2021, 11(2), 232 |
27 | Shin D. H., Seo S. W., Kim J. M., Lee H. S., Choi S. H., J. Alloys Compd., 2018, 744, 1—6 |
28 | Zhang X., Li Z., Zhang Z., Li S., Liu C., Guo W., Shen L., Wen S., Qu S., Ruan S., J. Phys. Chem. C, 2016, 120(26), 13954—13962 |
29 | Wang W., Li X., Li M., Zhong W., Yuan Y., Lin Z., Zhu Y., Zhu S., Yang T., Liang Y., ACS Appl. Nano Mater., 2024, 7(17), 19963—19969 |
30 | Yue L., Wei Y., Fan J., Chen L., Li Q., Du J., Yu S., Yang Y., New Carbon Mater., 2021, 36(2), 373—389 |
31 | Namdari P., Negahdari B., Eatemadi A., Biomed. Pharmacother., 2017, 87, 209—222 |
32 | Sciortino A., Cannizzo A., Messina F., C⁃J. Carbon Res., 2018, 4(4), 67 |
33 | Li K., Suo W., Shao M., Zhu Y., Wang X., Feng J., Fang M., Zhu Y., Nano Energy, 2019, 63, 103834 |
34 | Song H., Liu X., Wang B., Tang Z., Lu S., Sci. Bull., 2019, 64(23), 1788—1794 |
35 | Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem. Int. Ed., 2013, 52(14), 3953—3957 |
36 | Tang L., Ji R., Li X., Bai G., Liu C., Hao J., Lin J., Jiang H., Teng K., Yang Z., ACS Nano, 2014, 8(6), 6312—6320 |
37 | Wu, Z., Liu Z., Yuan Y., J. Mater. Chem. B, 2017, 5(21), 3794—3809 |
38 | Holá K., Sudolská M., Kalytchuk S., Nachtigallová D., Rogach A. L., Otyepka M., Zbořil R., ACS Nano, 2017, 11(12), 12402—12410 |
39 | Yang Y., Lin X., Li W., Ou J., Yuan Z., Xie F., Hong W., Yu D., Ma Y., Chi Z., Chen X., ACS Appl. Mater., 2017, 9(17), 14953—14959 |
40 | Zhan J., Geng B., Wu K., Xu G., Wang L., Guo R., Lei B., Zheng F., Pan D., Wu M., Carbon, 2018, 130, 153—163 |
41 | Zhang M., Hu L., Wang H., Song Y., Liu Y., Li H., Shao M., Huang H., Kang Z., Nanoscale, 2018, 10(26), 12734—12742 |
42 | Lu S., Xiao G., Sui L., Feng T., Yong X., Zhu S., Li B., Liu Z., Zou B., Jin M., Tse J. S., Yan H., Yang B., Angew. Chem. Int. Ed., 2017, 129(22), 6283—6287 |
43 | Yu Y., Zeng Q., Tao S., Xia C., Liu C., Liu P., Yang B., Adv. Sci., 2023, 10(12), 2207621 |
44 | Molaei M., Sol. Energy, 2020, 196, 549—566 |
45 | He C., Peng L., Li L., Cao Y., Tu J., Huang W., Zhang K., RSC Adv., 2019, 9(26), 15084—15091 |
46 | Jia X., Li J., Wang E., Nanoscale, 2012, 4(18), 5572—5575 |
47 | Shen J., Zhu Y., Chen C., Yang X., Li C., Chem. Commun., 2011, 47(9), 2580—2582 |
48 | Li S., He Z., Zhang S., Hao Z., Zhong H., ACS Appl. Mater. Interfaces, 2024, 16(35), 46332—46340 |
49 | Javed N., O'Carroll D. M., Part. Part. Syst. Char., 2021, 38(4), 2000271 |
50 | Tian X., Li Y., Cui M., Wang Y., Hao X., Zhang Y., Li N., Chen Y., Gao X., Rong Q., Nian L., Org. Electron., 2022, 108, 106578 |
51 | Liu J., Li R., Yang B., ACS Cent. Sci., 2020, 6, 2179—2195 |
52 | Yan L., Yang Y., Ma C., Liu X., Wang H., Xu B., Carbon, 2016, 109, 598—607 |
53 | Dong Y., Yu R., Zhao B., Gong Y., Jia H., Ma Z., Gao H., Tan Z., ACS Appl. Mater., 2022, 14(1), 1280—1289 |
54 | Hazra N., Hazra S., Paul S., Banerjee A., Chem. Commun., 2023, 59, 4931—4934 |
55 | Fang M., Wang B., Qu X., Li S., Huang J., Li J., Lu S., Zhou N., Chin. Chem. Lett., 2024, 35(1), 108423 |
56 | Li X., Wang W., Zhong W., Tang Y., Wang X., Li H., Yang T., Liang Y., Adv. Mater. Interfaces, 2023, 10(35), 2300502 |
57 | Chen B., Liu M., Li C., Huang C., Adv. Colloid Interface Sci., 2019, 270, 165—190 |
58 | Miao S., Liang K., Zhu J., Yang B., Zhao D., Kong B., Nano Today, 2020, 33, 100879 |
59 | Nguyen D. N., Roh S. H., Kim D. H., Lee J. Y., Wang D. H., Kim J. K., Dyes Pigm., 2021, 194, 109610 |
60 | Fu Q., Sun S., Lu K., Li N., Dong Z., Chin. Chem. Lett., 2024, 35(7), 109136 |
61 | Fu Q., Li N., Lu K., Dong Z., Yang Y., Mater. Today Chem., 2024, 37, 102032 |
62 | Shen J., Zhang T., Cai Y., Chen X., Shang S., Li J., New J. Chem., 2017, 41(19), 11125—11137 |
63 | Wu M., Li J., Wu Y., Gong X., Wu M., Small, 2023, 19(42), 2302764 |
64 | Sato K., Sato R., Iso Y., Isobe T., Chem. Commun., 2020, 56(14), 2174—2177 |
65 | Kearns D., Calvin M., J. Chem. Phys., 1958, 29(4), 950—951 |
66 | Pang S., Chen Z., Li J., Chen Y., Liu Z., Wu H., Duan C., Huang F., Cao Y., Mater. Horiz., 2023, 10(2), 473—482 |
67 | Georgiopoulou Z., Verykios A., Ladomenou K., Maskanaki K., Chatzigiannakis G., Armadorou K. K., Palilis L. C., Chroneos A., Evangelou E. K., Gardelis S., Nanomaterials, 2023, 13(1), 169 |
68 | Li M., Ni W., Kan B., Wan X., Zhang L., Zhang Q., Long G., Zuo Y., Chen Y., Phys. Chem. Chem. Phys., 2013, 15(43), 18973—18978 |
69 | Ding Z., Hao Z., Meng B., Xie Z., Liu J., Dai L., Nano Energy, 2015, 15, 186—192 |
70 | Hoang T. T., Pham H. P., Tran Q. T., J. Nanomater., 2020, 2020(1), 3207909 |
71 | Li S., Li L., Tu H., Zhang H., Silvester D. S., Banks C. E., Zou G., Hou H., Ji X., Mater. Today, 2021, 51, 188—207 |
72 | Ding Z., Miao Z., Xie Z., Liu J., J. Mater. Chem. A, 2016, 4(7), 2413—2418 |
73 | Xu H., Zhang L., Ding Z., Hu J., Liu J., Liu Y., Nano Res., 2018, 11, 4293—4301 |
74 | Zhang R., Zhao M., Wang Z., Wang Z., Zhao B., Miao Y., Zhou Y., Wang H., Hao Y., Chen G., ACS Appl. Mater. Interfaces, 2018, 10(5), 4895—4903 |
75 | Zhao W., Yan L., Gu H., Li Z., Wang Y., Luo Q., Yang Y., Liu X., Wang H., Ma C., ACS Appl. Energy Mater., 2020, 3(11), 11388—11397 |
76 | Zhu Y., Dai C., Hao C., Guo H., Yan L., Colloid. Surface. A, 2022, 648, 129401 |
77 | Lin X., Yang Y., Nian L., Su H., Ou J., Yuan Z., Xie F., Hong W., Yu D., Zhang M., Nano Energy, 2016, 26, 216—223 |
78 | Zhang X., Liu C., Li Z., Guo J., Shen L., Guo W., Zhang L., Ruan S., Long Y., Chem. Eng. J., 2017, 315, 621—629 |
79 | Wang Y., Yan L., Ji G., Wang C., Gu H., Luo Q., Chen Q., Chen L., Yang Y., Ma C., ACS Appl. Mater., 2018, 11(2), 2243—2253 |
80 | Kang R., Park S., Jung Y. K., Lim D. C., Cha M. J., Seo J. H., Cho S., Adv. Energy Mater., 2018, 8(10), 1702165 |
81 | Juang T., Kao J., Wang J., Hsu S., Chen C., Adv. Mater. Interfaces, 2018, 5(10), 1800031 |
82 | Park S., Lee H., Park S. W., Kim T. E., Park S. H., Jung Y. K., Cho S., Curr. Appl Phys., 2021, 21, 140—146 |
83 | Nguyen D. C., Kim B. S., Oh G. H., Vu V. P., Kim S., Lee S. H., Synth. Met., 2023, 298, 117430 |
84 | Tafese B. N., Aga F. G., Ganesh T., Geffe C. A., Int. J. Energy Res., 2023, 2023(1), 8847653 |
85 | Li Z., Zhang X., Liu C., Guo J., Cui H., Shen L., Guo W., ACS Appl. Mater. Interfaces, 2018, 10(46), 40255—40264 |
[1] | LI Dan, HU Honghui, HOU Hongshuai, ZHANG Sheng, LIU Lijie, JING Mingjun, WU Tianjing. Sodium Storage Performance of Mixed-phase Sodium Titanate Tuned by Carbon Dots [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240356. |
[2] | LIU Yize, LI Pengfei, SUN Zaicheng. Correlation Between the Photoluminescene Mechanism and Structure of Carbon Dots [J]. Chem. J. Chinese Universities, 2025, 46(6): 20250103. |
[3] | YANG Chunyuan, CHEN Hao, ZHANG Pan, LI Fucheng, YUAN Weixiong, GUO Jiazhuang, WANG Caifeng, CHEN Su. Synthesis, Fluorescence Mechanism and Patterning of Green-emissive Carbon Dots [J]. Chem. J. Chinese Universities, 2025, 46(6): 20250093. |
[4] | LIU Jinkun, RAN Zhun, LIU Qingqing, LIU Yingliang, ZHUANG Jianle, HU Chaofan. Preparation of Carbon Dot-based Multicolor Room-temperature Phosphorescent Materials via Precursor Structure Regulation Strategies [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240412. |
[5] | PANG E, TANG Yuanyu, ZHAO Shaojing, CHENG Qiang, WANG Chen, CHEN Jianmin, LAN Minhuan. Hypoxia Activated Chemotherapy Drug AQ4N and Carbon Dots Self-assembly for Chemotherapy Combined with Sonodynamic Therapy of Tumors [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240489. |
[6] | PAN Zhuohan, AI Lin, LU Siyu. Research Progress on the Mechanism, Synthesis and Application of Solid-state Luminescent Carbon Dots [J]. Chem. J. Chinese Universities, 2025, 46(6): 20250081. |
[7] | GUO Dan, HUANG Genghong, BAI Huijie, WANG Yaling, CAO Guangqun, LIU Bin, HU Shengliang. Preparation and Applications of CO2-Derived Red-emissive Carbon Dots with a High Quantum Yield [J]. Chem. J. Chinese Universities, 2025, 46(6): 20250091. |
[8] | XUE Xiaokuang, LI Jian, LIANG Huanyi, WANG Yiying, GE Jiechao. Red-emissive Mitochondria-targeting Iron-doped Carbon Dots for Tumor Therapy via Peroxidase-mimicking Activity-induced Ferroptosis [J]. Chem. J. Chinese Universities, 2025, 46(6): 20250094. |
[9] | LIU Yingqi, WANG Yemei, JIANG Kai, ZHENG Fenfen, ZHU Junjie. Colorimetric and Fluorescence Determination of Glucose Based on Cell-derived Fluorescent Carbon Dots [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240386. |
[10] | HAO Yongliang, LI Jian, WANG Zehua, GE Jiechao. Active Shrinkage Hydrogel Based on Red Emissive Carbon Dots Photosensitizers for Bacterial Infected Wound Healing [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240409. |
[11] | LI Fengshi, JIANG Kai, TONG Xinyuan, WU Yongjian, LIN Hengwei. Regulating Trap Density and Energy Levels Through Boron Doping to Achieve Duration-tunable Afterglow from Carbon Dots for Dynamic Information Encryption [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240545. |
[12] | WANG Changying, ZHANG Dawei, CHEN Guanji, ZHANG Zhenwei, XIAO Weihong, WANG Bin, CHEN Qidan, YANG Bai. Preparation of Carbon Dots Fluorescent Marker and Its Application in Highly Selective NO2‒ Detection [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240519. |
[13] | NI Jiawen, HUANG Zunhui, SONG Tianbing, MA Qianli, HE Tianle, ZHANG Xirong, XIONG Huanming. Ordered Lithium Deposition on Lithium Metal Anode Controlled by Boron-doped Carbon Dots from Solid-state Synthesis [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240185. |
[14] | LI Yan, CAI Hao, BI Hong. Antioxidative Carbon Dots Improving Acute Liver Injury Induced by Acetaminophen [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240130. |
[15] | LIU Yupeng, YANG Junxiang, HAO Yiming, QU Songnan. Recent Advances in Carbon Dots with Near-infrared Absorption/Emission [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240070. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||