Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (8): 20240177.doi: 10.7503/cjcu20240177
• Review • Previous Articles Next Articles
BAN Zhiyong1,2, YANG Caoyu2,3, FENG Qing2,3, YIN Guojun1(), LI Guodong2,3(
)
Received:
2024-04-10
Online:
2024-08-10
Published:
2024-07-08
Contact:
YIN Guojun, LI Guodong
E-mail:gjyin@126.com;liguodong@nanoctr.cn
Supported by:
CLC Number:
TrendMD:
BAN Zhiyong, YANG Caoyu, FENG Qing, YIN Guojun, LI Guodong. Research Progress on Catalytic Oxidative Coupling Reaction of Aniline with Green Oxidants[J]. Chem. J. Chinese Universities, 2024, 45(8): 20240177.
Catalyst | Oxidant | Temp./oC | Conv.(%) | Selectivity(%) | Generation rate/ (mmol·g-1·h-1) | Ref. | |
---|---|---|---|---|---|---|---|
Azobenzene | Azoxybenzene | ||||||
CuCr2O4 | H2O2 | 70 | 78 | — | 92 | 7.700 | [ |
[N(C4H9)4]2[Mo6O19] | H2O2 | 60 | — | — | 99%(Yield) | 1.517 | [ |
[N(C4H9)4]2[Mo6O19] | H2O2 | 50 | — | — | 93%(Yield) | 1.900 | [ |
Zr(OH)4 | H2O2 | r. t. | 98 | — | 98 | 25.82 | [ |
Zr(OH)4 | H2O2 | 40 | 95 | — | 97 | 2.064 | [ |
{Ni6}POM | H2O2 | 70 | 99.4 | — | 86 | 0.301 | [ |
Th6⁃C8A | H2O2 | r. t. | 98 | — | 98 | 0.100 | [ |
TBA6⁃Nb | H2O2 | 30 | 99 | — | 96 | 594.0 | [ |
Ru⁃POM catalysts | H2O2 | 40 | 99 | — | 97 | 10.12 | [ |
Cot⁃MA⁃12⁃Nb | H2O2 | 60 | 98 | — | 99 | 38.81 | [ |
Cu⁃CeO2 | H2O2 | 50 | 95 | — | 92 | 7.283 | [ |
CeO2 | H2O2 | r. t. | 84.4 | — | 62.4 | 6.583 | [ |
1.8% Ag/Fe2O3 | H2O2 | 50 | 92 | — | 94 | 5.405 | [ |
Nb2O5⁃scCO2 | H2O2 | r. t. | 86 | — | 92 | 1055 | [ |
USHT⁃200⁃2/56 | H2O2 | 27 | 54 | — | 100 | 1.808 | [ |
2.5% Ag/WO3 | H2O2 | r. t. | 87 | — | 91 | 1.649 | [ |
Nb⁃peroxo@Fe2O3 | H2O2 | r. t. | 99.6 | — | 83.7 | 14.87 | [ |
sub⁃15 nm CeO2 nanowire | H2O2 | r. t. | 70 | — | 60 | 1.873 | [ |
UiO⁃66 | H2O2 | 60 | 99 | — | 99 | 22.07 | [ |
Table 1 Summary of research progress on aniline oxidation coupling reactions using hydrogen peroxide as oxidant*
Catalyst | Oxidant | Temp./oC | Conv.(%) | Selectivity(%) | Generation rate/ (mmol·g-1·h-1) | Ref. | |
---|---|---|---|---|---|---|---|
Azobenzene | Azoxybenzene | ||||||
CuCr2O4 | H2O2 | 70 | 78 | — | 92 | 7.700 | [ |
[N(C4H9)4]2[Mo6O19] | H2O2 | 60 | — | — | 99%(Yield) | 1.517 | [ |
[N(C4H9)4]2[Mo6O19] | H2O2 | 50 | — | — | 93%(Yield) | 1.900 | [ |
Zr(OH)4 | H2O2 | r. t. | 98 | — | 98 | 25.82 | [ |
Zr(OH)4 | H2O2 | 40 | 95 | — | 97 | 2.064 | [ |
{Ni6}POM | H2O2 | 70 | 99.4 | — | 86 | 0.301 | [ |
Th6⁃C8A | H2O2 | r. t. | 98 | — | 98 | 0.100 | [ |
TBA6⁃Nb | H2O2 | 30 | 99 | — | 96 | 594.0 | [ |
Ru⁃POM catalysts | H2O2 | 40 | 99 | — | 97 | 10.12 | [ |
Cot⁃MA⁃12⁃Nb | H2O2 | 60 | 98 | — | 99 | 38.81 | [ |
Cu⁃CeO2 | H2O2 | 50 | 95 | — | 92 | 7.283 | [ |
CeO2 | H2O2 | r. t. | 84.4 | — | 62.4 | 6.583 | [ |
1.8% Ag/Fe2O3 | H2O2 | 50 | 92 | — | 94 | 5.405 | [ |
Nb2O5⁃scCO2 | H2O2 | r. t. | 86 | — | 92 | 1055 | [ |
USHT⁃200⁃2/56 | H2O2 | 27 | 54 | — | 100 | 1.808 | [ |
2.5% Ag/WO3 | H2O2 | r. t. | 87 | — | 91 | 1.649 | [ |
Nb⁃peroxo@Fe2O3 | H2O2 | r. t. | 99.6 | — | 83.7 | 14.87 | [ |
sub⁃15 nm CeO2 nanowire | H2O2 | r. t. | 70 | — | 60 | 1.873 | [ |
UiO⁃66 | H2O2 | 60 | 99 | — | 99 | 22.07 | [ |
Catalyst | Oxidant | Temp./℃ | Conv.(%) | Selectivity(%) | Generation rate/ (mmol·g-1·h-1) | Ref. | |
---|---|---|---|---|---|---|---|
Azobenzene | Azoxybenzene | ||||||
1.5% Au/TiO2 | O2 | 100 | 100 | 92 | — | 26.50 | [ |
5% Au1Pd3@C | O2 | 60 | 98 | 99 | — | 43.26 | [ |
0.5% Au/CeO2 | O2 | 100 | 100 | 93 | — | 50.00 | [ |
Zr(OH)4 | O2 | 110 | 97 | — | 90 | 0.782 | [ |
Zr(OH)4 | O2 | 100 | 95 | 94 | — | 4.001 | [ |
CuBr | Air | 60 | — | 96%(Yield) | — | 5.556 | [ |
Meso⁃Mn2O3 | Air | 110 | 99 | 99 | — | 1.225 | [ |
3.2% Ag/C | Air | 60 | — | 97%(Yield) | — | 31.17 | [ |
Table 2 Summary of research progress on aniline oxidation coupling reactions using oxygen as oxidant *
Catalyst | Oxidant | Temp./℃ | Conv.(%) | Selectivity(%) | Generation rate/ (mmol·g-1·h-1) | Ref. | |
---|---|---|---|---|---|---|---|
Azobenzene | Azoxybenzene | ||||||
1.5% Au/TiO2 | O2 | 100 | 100 | 92 | — | 26.50 | [ |
5% Au1Pd3@C | O2 | 60 | 98 | 99 | — | 43.26 | [ |
0.5% Au/CeO2 | O2 | 100 | 100 | 93 | — | 50.00 | [ |
Zr(OH)4 | O2 | 110 | 97 | — | 90 | 0.782 | [ |
Zr(OH)4 | O2 | 100 | 95 | 94 | — | 4.001 | [ |
CuBr | Air | 60 | — | 96%(Yield) | — | 5.556 | [ |
Meso⁃Mn2O3 | Air | 110 | 99 | 99 | — | 1.225 | [ |
3.2% Ag/C | Air | 60 | — | 97%(Yield) | — | 31.17 | [ |
47 | 鲁新环, 陶佩佩, 黄锋锋, 张香归, 林志成, 潘海军, 张海福, 周丹, 夏清华. 高等学校化学学报, 2019, 40(3), 528—535 |
48 | Zhao W. S., Shi Y. N., Jiang Y. H., Zhang X. F., Long C., An P. F., Zhu Y. F., Shao S. X., Yan Z., Li G. D., Tang Z. Y., Angew. Chem. Int. Ed., 2021, 60(11), 5811—5815 |
49 | De Almeida L. D., Wang H. L., Junge K., Cui X. J., Beller M., Angew. Chem. Int. Ed., 2021, 60(2), 550—565 |
50 | Zupanc A., Install J., Jereb M., Repo T., Angew. Chem. Int. Ed., 2023, 62(5), e202214453 |
51 | Meemken F., Baiker A., Chem. Rev., 2017, 117(17), 11522—11569 |
52 | Shi Y. F., Lyu Z. H., Zhao M., Chen R. H., Nguyen Q. N., Xia Y. N., Chem. Rev., 2021, 121(2), 649—735 |
53 | Miao X., Chen W. X., Lv S. N., Li A. R., Li Y. H., Zhang Q. H., Yue Y. H., Zhao H. W., Liu L. M., Guo S. J., Guo L., Adv. Mater., 2023, 35(14), 2211790 |
54 | Jin H. Q., Zhao R. Q., Cui P. X., Liu X. L., Yan J., Yu X. H., Ma D., Song W. G., Cao C. Y., J. Am. Chem. Soc., 2023, 145(22), 12023—12032 |
55 | Jin H. Q., Zhou K. X., Zhang R. X., Cui H. J., Yu Y., Cui P. X., Song W. G., Cao C. Y., Nat. Comm., 2023, 14(1), 2494 |
56 | Pei J. J., Shang H. S., Mao J. J., Chen Z., Sui R., Zhang X. J., Zhou D. N., Wang Y., Zhang F., Zhu W., Wang T., Chen W. X., Zhuang Z. B., Nat. Comm., 2024, 15(1), 416 |
57 | Duan H. H., Liu J. C., Xu M., Zhao Y. F., Ma X. L., Dong J. C., Zheng X. S., Zheng J. W., Allen C. S., Danaie M., Peng Y. K., Issariyakul T., Chen D. L., Kirkland A. I., Buffet J. C., Li J., Tsang S. C. E., O’Hare D., Nat. Catal., 2019, 2(12), 1078—1087 |
58 | Zhao Q., Zheng L. R., Gao Y. X., Li J. J., Wei J. J., Zhang M., Sun J. H., Ou Yang J., Na N., J. Am. Chem. Soc., 2023, 145(23), 12586—12600 |
59 | Krylova G., Dimitrijevic N. M., Talapin D. V., Guest J. R., Borchert H., Lobo A., Rajh T., Shevchenko E. V., J. Am. Chem. Soc., 2010, 132(26), 9102—9110 |
60 | He D., Jones A. M., Garg S., Pham A. N., Waite T. D., J. Phys. Chem. C, 2011, 115(13), 5461—5468 |
61 | Bardi G., Boselli L., Pompa P. P., Nanoscale, 2023, 15(35), 14284—14300 |
62 | Ghosh S., Acharyya S. S., Sasaki T., Bal R., Green Chem., 2015, 17(3), 1867—1876 |
63 | Paul B., Sharma S. K., Adak S., Khatun R., Singh G., Das D., Joshi V., Bhandari S., Dhar S. S., Bal R., New J. Chem., 2019, 43(23), 8911—8918 |
64 | Ding B. J., Jiang Y. J., Xu B. B., Dai S., Gong H. H., Zhao X. G., Yao Y. F., An P. F., Hou Z. S., Appl. Catal. A: Gen., 2023, 652, 119026 |
65 | Han L., Cai S., Gao M., Hasegawa J. Y., Wang P., Zhang J., Shi L., Zhang D., Chem. Rev., 2019, 119(19), 10916—10976 |
66 | Fan G. L., Li F., Evans D. G., Duan X., Chem Soc. Rev., 2014, 43(20), 7040—7066 |
67 | Fihri A., Bouhrara M., Nekoueishahraki B., Basset J. M., Polshettiwar V., Chem Soc. Rev., 2011, 40(10), 5181—5203 |
68 | Wachs I. E., Roberts C. A., Chem Soc. Rev., 2010, 39(12), 5002—5017 |
69 | Wang Z. J., Wei Y. Z., Qi J., Wan J. W., Wang Z. M., Yu R. B., Wang D., Adv. Funct. Mater., 2024, doi: 10.1002/adfm.202316547 |
70 | Wang J. Y., Wan J. W., Yang N. L., Li Q., Wang D., Nat. Rev. Chem., 2020, 4(3), 159—168 |
71 | Zhao Y. F., Waterhouse G. I. N., Chen G. B., Xiong X. Y., Wu L. Z., Tung C. H., Zhang T. R., Chem. Soc. Rev., 2019, 48(7), 1972—2010 |
72 | Da Silva A. G. M., Batalha D. C., Rodrigues T. S., Candido E. G., Luz S. C., de Freitas I. C., Fonseca F. C., de Oliveira D. C., Taylor J. G., Córdoba de Torresi S. I., Camargo P. H. C., Fajardo H. V., Catal. Sci. Technol., 2018, 8(7), 1828—1839 |
73 | Tian L. Y., Liao Y. S., Chou J. P., Tan Z. C., Chen J. L., Lee J. H., Benedict Lo T. W., Peng Y. K., J. Mater. Chem. A, 2023, 11(26), 14034—14042 |
74 | Passoni L. C., Siddiqui M. R. H., Steiner A., Kozhevnikov I. V., J. Mol. Catal. A: Chem., 2000, 153(1/2), 103—108 |
75 | Maksimchuk N. V., Maksimov G. M., Evtushok V. Y., Ivanchikova I. D., Chesalov Y. A., Maksimovskaya R. I., Kholdeeva O. A., Sole⁃Daura A., Poblet J. M., Carbo J. J., ACS Catal., 2018, 8(10), 9722—9737 |
76 | Maksimchuk N. V., Ivanchikova I. D., Maksimov G. M., Eltsov I. V., Eytushok V. Y., Kholdeeva O. A., Lebbie D., Errington R. J., Sole⁃Daura A., Poblet J. M., Carbo J. J., ACS Catal., 2019, 9(7), 6262—6275 |
77 | Kholdeeva O. A., Ivanchikova I. D., Maksimchuk N. V., Skobelev I. Y., Catal. Today, 2019, 333, 63—70 |
78 | Egami H., Oguma T., Katsuki T., J. Am. Chem. Soc., 2010, 132(16), 5886—5895 |
79 | Lima A. L. D., Fajardo H. V., Nogueira A. E., Pereira M. C., Oliveira L. C. A., de Mesquita J. P., Silva A. C., New J. Chem., 2020, 44(21), 8710—8717 |
80 | Tao Y. H., Singh B., Jindal V., Tang Z. C., Pescarmona P. P., Green Chem., 2019, 21(21), 5852—5864 |
81 | Qin J. H., Long Y., Sun F. K., Zhou P. P., Wang W. D., Luo N., Ma J. T., Angew. Chem. Int. Ed., 2021, 61(2), e202112907 |
82 | Hickman A. J., Sanford M. S., Nature, 2012, 484(7393), 177—185 |
83 | Dub P. A., Gordon J. C., Nat. Rev. Chem., 2018, 2(12), 396—408 |
84 | Li X. Z., Mitchell S., Fang Y. Y., Li J., Perez⁃Ramirez J., Lu J., Nat. Rev. Chem., 2023, 7(11), 754—767 |
85 | Obligacion J. V., Chirik P. J., Nat. Rev. Chem., 2018, 2(5), 15—34 |
86 | Wodrich M. D., Hu X. L., Nat. Rev. Chem., 2018, 2(1), 1—7 |
87 | Manssen M., Schafer L. L., Chem Soc. Rev., 2020, 49(19), 6947—6994 |
88 | Zheng F. B., Lin T., Wang K., Wang Y. L., Li G. D., Nano Res., 2023, 16(12), 12919—12935 |
89 | Zhang X. F., Yang C. Y., An P. F., Cui C. P., Ma Y. M., Liu H. T., Wang H., Yan X. Y., Li G. D., Tang Z. Y., Sci. Adv., 2022, 8, eadd5678 |
90 | Zhang X. F., Liu H. T., An P. F., Shi Y. N., Han J. Y., Yang Z. J., Long C., Guo J., Zhao S. L., Zhao K., Yin H. J., Zheng L. R., Zhang B. H., Liu X. P., Zhang L. J., Li G. D., Tang Z. Y., Sci. Adv., 2020, 6(17), eaaz4824 |
91 | Ding B. J., Xu B. B., Ding Z. J., Zhang T., Wang Y. J., Qiu H. W., He J. J., An P. F., Yao Y. F., Hou Z. S., Catal. Sci. Technol., 2022, 12(17), 5360—5371 |
92 | Cai S., Wu X. Y., Wu W. M., Wang S. S., Lu C. Z., Chin. Chem. Lett., 2024, 35(2), 108324 |
93 | Niu Q., Huang Q., Yu T. Y., Liu J., Shi J. W., Dong L. Z., Li S. L., Lan Y. Q., J. Am. Chem. Soc., 2022, 144(40), 18586—18594 |
94 | Han S., Cheng Y., Liu S. S., Tao C. F., Wang A. P., Wei W. G., Yu H., Wei Y. G., Angew. Chem. Int. Ed., 2021, 60(12), 6382—6385 |
95 | Su X. F., Wei Y. G., Ma N. N., Zhang H. C., Yan L. K., J. Phys. Chem. C, 2023, 127(8), 4124—4131 |
96 | Zheng J. H., Chen X., Yin X. X., Chen K., Liu A. L., Yu X. C., Wang S., Chen Z. W., Mol. Catal., 2023, 548, 113420 |
97 | Acharyya S. S., Ghosh S., Bal R., ACS Sustainable Chem. Eng., 2014, 2(4), 584—589 |
98 | Cai S., Wu X. Y., Wu W. M., Wang S. S., Lu C. Z., Chin. Chem. Lett., 2024, 35(2), 108324 |
99 | Li H. F., Yuan Z. L., Chen W. J., Yang M. N., Sun Y. H., Zhang S. H., Ma P. T., Wang J. P., Niu J. Y., J. Mater. Chem. A, 2023, 11(20), 10813—10822 |
100 | Shukla A., Singha R. K., Konathala L. N. S., Sasaki T., Bal R., RSC Adv., 2016, 6(27), 22812—22820 |
101 | Jagtap N., Ramaswamy V., Appl. Clay Sci., 2006, 33(2), 89—98 |
102 | Solomon E. L., Stahl S. S., Chem. Rev., 2018, 118(5), 2299—2301 |
103 | Qiu C. B., Jin L. Q., Huang Z. L., Tang Z. Q., Lei A. W., Shen Z. L., Sun N., Mo W. M., Hu B. X., Hu X. Q., ChemCatChem, 2012, 4(1), 76—80 |
104 | Cui Y., Shao X., Baldofski M., Sauer J., Nilius N., Freund H. J., Angew. Chem. Int. Ed., 2013, 52(43), 11385—11387 |
105 | Liu H. L., Liu W., Xue G. X., Tan T., Yang C. Y., An P. F., Chen W. X., Zhao W. S., Fan T., Cui C. Q., Tang Z. Y., Li G. D., J. Am. Chem. Soc., 2023, 145(20), 11085—11096 |
106 | Cai S. F., Rong H. P., Yu X. F., Liu X. W., Wang D. S., He W., Li Y. D., ACS Catal., 2013, 3(4), 478—486 |
107 | Grirrane A., Corma A., García H., Science, 2008, 322(5908), 1661—1664 |
108 | Perez Y., Aprile C., Corma A., Garcia H., Catal. Lett., 2009, 134(3), 204—209 |
1 | Jerca F. A., Jerca V. V., Hoogenboom R., Nat. Rev. Chem., 2021, 6(1), 51—69 |
2 | Cai B. G., Empel C., Yao W. Z., Koenigs R. M., Xuan J., Angew. Chem. Int. Ed., 2023, 62(48), e202312031 |
3 | Liu Y. F., Liu B., Dong Z. M., Jin S., Liang C. Y., Zhu R. T., Lu Y., Chem. J. Chinese Universities, 2010, 31(12), 2396—2399 |
刘宇芳, 刘博, 董振明, 金硕, 梁彩云, 朱瑞涛, 鲁云. 高等学校化学学报, 2010, 31(12), 2396—2399 | |
4 | Wibowo M., Ding L., J. Nat. Prod., 2020, 83(11), 3482—3491 |
5 | Benkhaya S., M'Rabet S., El Harfi A., Heliyon, 2020, 6(1), e03271 |
6 | Chung K. T., J. Environ. Sci. Health. C: Environ. Carcinog. Ecotoxicol. Rev., 2016, 34(4), 233—261 |
7 | Joseph J. M., Destaillats H., Hung H. M., Hoffmann M. R., J. Phys. Chem. A, 2000, 104(2), 301—307 |
8 | Scotter M. J., Food Addit. Contan. A, 2011, 28(5), 527—596 |
9 | Faisal S., Ali M., Naqvi S., Lin L., J. Nat. Fibers, 2022, 19(13), 6737—6747 |
10 | Russew M. M., Hecht S., Adv. Mater., 2010, 22(31), 3348—3360 |
11 | Jerca F. A., Jerca V. V., Hoogenboom R., Chem, 2017, 3(4), 533—536 |
12 | Beharry A. A., Woolley G. A., Chem. Soc. Rev., 2011, 40(8), 4422—4437 |
13 | Kumar G. S., Neckers D. C., Chem. Rev., 1989, 89(8), 1915—1925 |
14 | Feng X., Guo N., Chen H. P., Wang H. L., Yue L. Y., Chen X., Ng S. W., Liu X. F., Ma L. F., Wang L. Y., Dalton Trans., 2017, 46(41), 14192—14200 |
15 | He J., Kovach A., Chen D., Saris P. J. G., Yu R., Armani A. M., Opt. Express, 2020, 28(15), 22462—22477 |
16 | Li Y. R., Xue B., Yang J. H., Jiang J. L., Liu J., Zhou Y. Y., Zhang J. S., Wu M. J., Yuan Y., Zhu Z. S., Wang Z. J., Chen Y. l., Harabuchi Y., Nakajima T., Wang W., Maeda S., Gong J. P., Cao Y., Nat. Chem., 2023, 16(3), 446—455 |
17 | Yang J. H., Dai L. Y., Wang X. Z., Chen Y. Q., Chin. Chem. Lett., 2011, 22(9), 1047—1050 |
18 | Hou L., Shi Y. Y., Jiang G. X., Liu W., Han H. L., Feng Q. H., Ren J. X., Yuan Y. J., Wang Y. C., Shi J. J., Zhang Z. Z., Nanotechnology, 2016, 27(31), 315105 |
19 | Alizadeh S. R., Hashemi S. M., Med. Chem. Res., 2021, 30(4), 771—806 |
20 | Aoki Y., Yamamoto M., Hosseini⁃Mazinani S. M., Koshikawa N., Sugimoto K., Arisawa M., Antimicrob. Agents Chemother., 1996, 40(1), 127—132 |
21 | Mügge C., Heine T., Baraibar A. G., van Berkel W. J. H., Paul C. E., Tischler D., Appl. Microbiol. Biotechnol., 2020, 104(15), 6481—6499 |
22 | Garg R. P., Alemany L. B., Moran S., Parry R. J., J. Am. Chem. Soc., 2009, 131(28), 9608—9609 |
23 | Shimizu T., Tanifuji N., Yoshikawa H., Angew. Chem. Int. Ed., 2022, 61(36), e202206093 |
24 | Wang L. L., Zhai L. J., She W. Q., Wang M. C., Zhang J. L., Wang B. Z., Front. Chem., 2022, 10, 871684 |
25 | Han C. S., Lee K. W., Jaffe H. H., J. Am. Chem. Soc., 1967, 89(19), 4975—4981 |
26 | Mikheev Y. A., Russ. J. Phys. Chem., 2021, 95(9), 1803—1810 |
27 | Özen A. S., Erdem S. S., Aviyente V., Struct. Chem., 1998, 9(1), 15—25 |
28 | Szarmach M., Wagner⁃Wysiecka E., Luboch E., Tetrahedron, 2013, 69(51), 10893—10905 |
29 | Nguyen T. H. L., Gigant N., Joseph D., ACS Catal., 2018, 8(2), 1546—1579 |
30 | Merino E., Chem Soc. Rev., 2011, 40(7), 3835—3853 |
31 | Zhao M. Y., Tang Y. F., Han G. Z., Molecules, 2023, 28(18), 6741 |
32 | Firouzabadi H., Mostafavipoor Z., Bull. Chem. Soc. Jpn., 1983, 56(3), 914—917 |
33 | Takeda Y., Okumura S., Minakata S., Angew. Chem. Int. Ed., 2012, 51(31), 7804—7808 |
34 | Zhang M., Zhang R. L., Zhang A. Q., Li X. F., Liang H. H., Synth. Commun., 2009, 39(19), 3428—3435 |
35 | Bacon E. S., Richardson D. H., J. Chem. Soc., 1932, 884—888 |
36 | Podgorsek A., Zupan M., Iskra J., Angew. Chem. Int. Ed., 2009, 48(45), 8424—8450 |
37 | Guo Z., Liu B., Zhang Q. H., Deng W. P., Wang Y., Yang Y. H., Chem Soc. Rev., 2014, 43(10), 3480—3524 |
38 | Haynes W. M., CRC Handbook of Chemistry and Physics, Taylor & Francis Group, Boca Raton, FL, 2017, 5—79 |
39 | Pesterfield L., J. Chem. Educ., 2009, 86(10), 1182 |
40 | Agarwal N., Freakley S. J., McVicker R. U., Althahban S. M., Dimitratos N., He Q., Morgan D. J., Jenkins R. L., Willock D. J., Taylor S. H., Kiely C. J., Hutchings G. J., Science, 2017, 358(6360), 223—227 |
41 | Shah H. U. R., Ahmad K., Naseem H. A., Parveen S., Ashfaq M., Aziz T., Shaheen S., Babras A., Shahzad A., J. Mol. Struct., 2021, 1244, 131181 |
42 | Hage R., Lienke A., Angew. Chem. Int. Ed., 2006, 45(2), 206—222 |
109 | Oseghale C. O., Fapojuwo D. P., Alimi O. A., Akinnawo C. A., Mogudi B. M., Onisuru O. R., Meijboom R., Eur. J. Org. Chem., 2021, 2021(36), 5063—5073 |
110 | Fu F. Y., He S., Yang S., Wang C., Zhang X., Li P., Sheng H. T., Zhu M. Z., Sci. China Chem., 2015, 58(10), 1532—1536 |
111 | Saha A., Payra S., Selvaratnam B., Bhattacharya S., Pal S., Koodali R. T., Banerjee S., ACS Sustainable Chem. Eng., 2018, 6(9), 11345—11352 |
112 | Patel A. R., Patel G., Maity G., Patel S. P., Bhattacharya S., Putta A., Banerjee S., ACS Omega, 2020, 5(47), 30416—30424 |
113 | Zhang C., Jiao N., Angew. Chem. Int. Ed., 2010, 49(35), 6174—6177 |
114 | Dutta B., Biswas S., Sharma V., Savage N. O., Alpay S. P., Suib S. L., Angew. Chem. Int. Ed., 2016, 55(6), 2171—2175 |
115 | Zhang Y. F., Mellah M., ACS Catal., 2017, 7(12), 8480—8486 |
116 | Ma Y. F., Wu S. H., Jiang S. X., Xiao F. H., Deng G. J., Chin. J. Chem., 2021, 39(12), 3334—3338 |
117 | Luo L., Liu Y. G., Chen W. S., Xue X. M., Xu S. M., Li M., Zhou H., Ma L. A., Xu M., Kong X. G., Shao M. F., Li Z. H., Duan H. H., Chem Catal., 2023, 3(1), 100472 |
118 | Carreno N. L. V., Deon V. G., Silva R. M., Santana L. R., Pereira R. M., Orlandi M. O., Ventura W. M., Dias A., Taylor J. G., Fajardo H. V., Mesko M. F., ACS Sustainable Chem. Eng., 2018, 6(2), 1680—1691 |
43 | Brillas E., Sirés I., Oturan M. A., Chem. Rev., 2009, 109(12), 6570—6631 |
44 | Pan D. J., Chemical Engineering Design Communications, 2022, 48(12), 206—208 |
潘得驹. 化工设计通讯, 2022, 48(12), 206—208 | |
45 | Sun G., Li M. M. J., Nakagawa K., Li G. C., Wu T. S., Peng Y. K., Appl. Catal. B: Environ., 2022, 313, 121461 |
46 | Faccioli F., Bauer M., Pedron D., Sorarù A., Carraro M., Gross S., Eur. J. Inorg. Chem., 2014, 2015(2), 210—225 |
47 | Lu X. H., Tao P. P., Huang F. F., Zhang X. G., Lin Z. C., Pan H. J., Zhang H. F., Zhou D., Xia Q. H., Chem. J. Chinese Universities, 2019, 40(3), 528—535 |
[1] | GAO Yongping, LIU Bai, KANG Jianing, LYU Jieqiong, YU Zeguang, ZHANG Zhihui, GAO Wenxiu. Nitrogen-doped Carbon Material MG-T Heterogeneous Catalyzed Hydrogenation of Nitrobenzene to Aniline [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240040. |
[2] | ZHANG Shuo, ZHAO Liuyang, HUANG Hao, WU Aimin, LI Aikui. Oxygen Framework Mechanism of Layered Lithium-rich Manganese-based Materials Stabilized by High-valent Element Mo Based on First-principles Calculations [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240035. |
[3] | CHEN Beiyi, GUAN Wenna, JIN Zhao, LIU Tingting, ZHOU Rui. Preparation and Application of Imidazole-based Ionic Liquid and Amide Bipolar Groups Co-embedded Hydrophilic C18 Silica Gel Stationary Phase [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230503. |
[4] | CHEN Rong, WEN Liangying, YUE Dong, YANG Zhongqing. Density Functional Theory Analysis of Coadsorption Behavior of Cl2 and O2 on TiC(100) Surface [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230497. |
[5] | DU Qing, NIU Huibin, XU Yan, ZHANG Jing, LAN Xing, HUANG Yingping, TAN Yunzhi, CHEN Xiaoting, FANG Yanfen. Mechanism of Molecular Oxygen Activation Mediated by Hydroxyl Groups on the Surface of Red Clay [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230422. |
[6] | WANG Qiuxia, HAN Yugui, ZHAO Peng, WANG Shuang, LIU Yaru, LI Yi. CuBi2O4/Bi2WO6 Z-type Heterostructures for Effective Removal Ciprofloxacin in Photo-electro-Fenton-like System [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230370. |
[7] | LI Xuan, QI Shuai, ZHOU Weiliang, LI Xiaojie, JING Lingyan, FENG Chao, JIANG Xingxing, YANG Hengpan, HU Qi, HE Chuanxin. Advances in Nanofiber-based Electrocatalysts for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220770. |
[8] | BAO Chunzhu, XIANG Zhonghua. Pyrolysis-free Strategy of Covalent Organic Polymers-based Oxygen Reduction Electrocatalytic Materials [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220715. |
[9] | WANG Jun, DU Shiqian, TAO Li. Recent Progress of Catalysts in the High Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220722. |
[10] | ZHANG Xiaoyu, QU Gan, XUE Dongping, YAN Wenfu, ZHANG Jianan. Recent Process of Carbon-based Catalysts for the Production of H2O2 by Electrocatalytic Oxygen Reduction: Strategies, Calculation and Practical Applications [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220775. |
[11] | LI Ruisong, MIAO Zhengpei, LI Jing, TIAN Xinlong. Research Progress on Hollow Precious Metal-based Nanostructures for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220730. |
[12] | GUO Haotian, LU Xinhuan, SUN Fanqi, TAO Yiyuan, DUAN Jingui, ZHANG Wang, ZHOU Dan, XIA Qinghua. Synthesis of Nanospherical Mo-MOF Materials for Catalytic Selective Oxidation of Thioethers [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230408. |
[13] | XIE Xiaolan, LIU Zhan, LYU Jiamin, YU Shen, LI Xiaoyun, SU Baolian, CHEN Lihua. Preparation of Cu-based Hierarchical Pore ZSM-5 Zeolite Single Crystals and Their Catalytic Properties for Nitrobenzene Hydrogenation [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230109. |
[14] | LI Ziruo, ZHANG Hongjuan, ZHU Guoxun, XIA Wei, TANG Jing. Iron Phthalocyanine Coated Nitrogen-doped Hollow Carbon Spheres for Efficient Catalysis of Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220677. |
[15] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||