Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (7): 20240103.doi: 10.7503/cjcu20240103
• Analytical Chemistry • Previous Articles Next Articles
WEI Chaoxian1,2, LI Nansheng2, PANG Yuanhao2, ZHANG Yun1,2, JIN Wenying2, YUAN Yali1,2()
Received:
2024-03-04
Online:
2024-07-10
Published:
2024-05-20
Contact:
YUAN Yali
E-mail:thanksin2013@163. com
Supported by:
CLC Number:
TrendMD:
WEI Chaoxian, LI Nansheng, PANG Yuanhao, ZHANG Yun, JIN Wenying, YUAN Yali. Synthesis of Carbon Nanopolymers Based on Deep Eutectic Strategy for Simultaneous Electrochemical Detection of a Variety of Biological Small Molecules[J]. Chem. J. Chinese Universities, 2024, 45(7): 20240103.
Sample | Analyte | Detected/(µmol‧L-1) | Added/(µmol‧L-1) | Found/(µmol‧L-1) | Recovery(%) | RSD(%, n=3) |
---|---|---|---|---|---|---|
Serum sample | AA | Not found | 200 | 208.0 | 104.0 | 1.96 |
700 | 732.7 | 104.7 | 2.26 | |||
DA | Not found | 100 | 96.7 | 96.7 | 1.68 | |
350 | 333.0 | 95.1 | 3.10 | |||
UA | Not found | 50 | 50.2 | 100.4 | 0.40 | |
150 | 143.5 | 95.7 | 4.30 | |||
ACSF | DA | Not found | 200 | 170.2 | 85.1 | 1.45 |
500 | 508.3 | 101.2 | 4.03 |
Table 1 Results of determination of AA, DA and UA in real samples
Sample | Analyte | Detected/(µmol‧L-1) | Added/(µmol‧L-1) | Found/(µmol‧L-1) | Recovery(%) | RSD(%, n=3) |
---|---|---|---|---|---|---|
Serum sample | AA | Not found | 200 | 208.0 | 104.0 | 1.96 |
700 | 732.7 | 104.7 | 2.26 | |||
DA | Not found | 100 | 96.7 | 96.7 | 1.68 | |
350 | 333.0 | 95.1 | 3.10 | |||
UA | Not found | 50 | 50.2 | 100.4 | 0.40 | |
150 | 143.5 | 95.7 | 4.30 | |||
ACSF | DA | Not found | 200 | 170.2 | 85.1 | 1.45 |
500 | 508.3 | 101.2 | 4.03 |
Electrochemical sensor | Method | Analyte(s) | LOD/(µmol‧L-1) | Linear range/(µmol‧L-1) | Ref. |
---|---|---|---|---|---|
g⁃C3N4/MWNTs⁃GO | Electrochemistry | AA | 96 | 250—7500 | [ |
CuNCs | Fluorescence | AA | 41.94 | 50—1000 | [ |
Direct detection | UV⁃Vis spectrometry | AA | 2900 | 2900—35000 | [ |
PEDOT⁃Au NPs | Electrochemistry | AA | 21 | 100—1000 | This work |
g⁃C3N4/MWNTs⁃GO | Electrochemistry | DA | 0.22 | 2—100 | [ |
SiW₉M₃ | Colorimetry | DA | 5.38 | 5.38—108 | [ |
PEDOT⁃Au NPs | Electrochemistry | DA | 0.38 | 50—500 | This work |
g⁃C3N4/MWNTs⁃GO | Electrochemistry | UA | 1.36 | 4—200 | [ |
PEDOT⁃Au NPs | Electrochemistry | UA | 0.016 | 22.5—225 | This work |
Table 2 Comparison of the determination ability of AA, DA and UA with other reported electrochemical sensors
Electrochemical sensor | Method | Analyte(s) | LOD/(µmol‧L-1) | Linear range/(µmol‧L-1) | Ref. |
---|---|---|---|---|---|
g⁃C3N4/MWNTs⁃GO | Electrochemistry | AA | 96 | 250—7500 | [ |
CuNCs | Fluorescence | AA | 41.94 | 50—1000 | [ |
Direct detection | UV⁃Vis spectrometry | AA | 2900 | 2900—35000 | [ |
PEDOT⁃Au NPs | Electrochemistry | AA | 21 | 100—1000 | This work |
g⁃C3N4/MWNTs⁃GO | Electrochemistry | DA | 0.22 | 2—100 | [ |
SiW₉M₃ | Colorimetry | DA | 5.38 | 5.38—108 | [ |
PEDOT⁃Au NPs | Electrochemistry | DA | 0.38 | 50—500 | This work |
g⁃C3N4/MWNTs⁃GO | Electrochemistry | UA | 1.36 | 4—200 | [ |
PEDOT⁃Au NPs | Electrochemistry | UA | 0.016 | 22.5—225 | This work |
1 | Xing L., Ma Z., Microchim. Acta, 2016, 183(1),257—263 |
2 | Santos K. L. B., Bragança V. A. N., Pacheco L. V., Ota S. S. B., Aguiar C. P. O., Borges R. S., J. Mol. Model., 2021, 28(1), 1 |
3 | Costa K. M., Schoenbaum G., Curr. Bio., 2022, 32(15), R817—R824 |
4 | Madras B. K., Miller G. M., Fischman A. J., Behav. Brain Res., 2002, 130(1/2), 57—63 |
5 | Comings D. E., Gade R., Wu S., Chiu C., Dietz G., Muhleman D., Saucier G., Ferry L., Rosenthal R. J., Lesieur H. R., Mol. Psychiatr., 1997, 2(1), 44—56 |
6 | Wang Z., Cui T., Ci X., Zhao F., Sun Y., Li Y., Liu R., Wu W., Yi X., Liu C., J. Nephrol., 2019, 32(2), 177—187 |
7 | Desideri G., Virdis A., Casiglia E., Borghi C., Cicero A. F. G., Muiesan M. L., Rosei E. A., Salvetti M., Ungar A., Rivasi G., High Blood Press. Cardiovasc. Prevent., 2018, 25(2), 197—202 |
8 | Zhao H., Li Y., Zhao H., Zhao Z., Wang J., Zhang R., J. Colloid Interface Sci., 2022, 613,285—296 |
9 | Heinrich F., Riedel M., Lisdat F., Electrochem. Commun., 2018, 90,65—68 |
10 | Silva T. A., Khan M. R. K., Fatibello⁃Filho O., Collinson M. M., J. Electroanal. Chem., 2019, 846,113160 |
11 | Deng Y. N., Zhang Z. H., Pang Y. H., Zhou X. Y., Wang Y., Zhang Y., Yuan Y. L., Anal. Chim. Acta, 2022, 1227,340331 |
12 | Li Y., Lin X., Sens. Actuators B: Chem., 2006, 115(1), 134—139 |
13 | Sudha V., Senthil Kumar S. M., Thangamuthu R., Colloid Surf. B⁃Biointerfaces, 2019, 177, 529—540 |
14 | Wu P., Huang Y., Zhao X., Lin D., Xie L., Li Z., Zhu Z., Zhao H., Lan M., Microchem J., 2022, 181, 107780 |
15 | Forrest S. R., Nature, 2004, 428, 911—918 |
16 | Morales A. M., Lieber C. M., Science, 1998, 279(5348), 208—211 |
17 | Teng H., Song J. Y., Xu G. Y., Gao F. X., Luo X. L., Electrochim. Acta, 2020, 355,136772 |
18 | Hung P. S., Wang G. R., Chung W. A., Chiang T. T., Wu P. W., Nanomaterials⁃Basel, 2020, 10(9), 1722 |
19 | Lee S. H., Bang J. H., Kim J., Park C., Choi M. S., Mirzaei A., Im S. S., Ahn H., Kim H. W., Sens. Actuators B: Chem., 2021, 327, 128924 |
20 | Lu Z. Y., Yu Z. H., Dong J. B., Song M. S., Liu Y., Liu X. L., Ma Z. F., Su H., Yan Y. S., Huo P. W., Chem. Eng. J., 2018, 337, 228—241 |
21 | Samsonova L. G., Degtyarenko K. M., Kopylova T. N., Palatova A. V., Kukhta A. V., Russ. Phys. J., 2016, 59(4), 585—589 |
22 | Poverenov E., Li M., Bitler A., Bendikov M., Chem. Mat., 2010, 22(13), 4019—4025 |
23 | Ouyang J. Y., Acta Phys.⁃Chim. Sin., 2018, 34(11), 1211—1220 |
24 | Wei C. H., Huang X. R., J. Mol. Liq., 2023, 374, 121269 |
25 | Mesquita L. D., Contieri L. S., Sosa F. H. B., Pizani R. S., Chaves J., Vigano J., Ventura S. P. M., Rostagno M. A., Green Chem., 2023, 25(5),1884—1897 |
26 | Sirvio J. A., Visanko M., Liimatainen H., Green Chem., 2015, 17(6), 3401—3406 |
27 | Zhang X. Y., Lee J. S., Lee G. S., Cha D. K., Kim M. J., Yang D. J., and Manohar S. K., Macromolecules, 2006, 39(2), 470—472 |
28 | Zhao Z., Richardson G. F., Meng Q., Zhu S., Kuan H. C., Ma J., Nanotechnology, 2016, 27(4), 042s001 |
29 | Xiao Z. R., Meng H., Qin X. F., Sang X. Q., Zhang Y., Yuan Y. L., Analyst, 2021, 146(2), 597—604 |
30 | Bhat K. S., Byun S., Alam A., Ko M., An J., Lim S., Talanta, 2022, 244,123421 |
31 | Fu H., Bai Z. Y., Li P., Feng X. Y., Hu X. P., Song X. L., Chen L. X., Food Chem., 2023, 409,135292 |
32 | Han Z. P., Zhang X. Y., Yuan H., Li Z. D., Li G. Z., Zhang H. Y., Tan Y. Q., J. Power Sources, 2022, 521,230956 |
33 | Wu F. X., Tian Y., Luan X. X., Lv X. L., Li F. H., Xu G. B., Niu W. X., Nano Lett., 2022, 22(7), 29157—2922 |
34 | Cheng W., Liu Y., Tong Z., Zhu Y., Cao K., Chen W., Zhao D., Yu H., EcoMat, 2023, 5(2), e12288 |
35 | Zor E., Bekar N., Biosens. Bioelectron., 2017, 91, 211—216 |
36 | Singh M., Kaur R., Singh J., Rawat M., Kaur H., Kumar S., Alahmadi T. A., Alharbi S. A., Wainwright M., Mohamed A., J. King Saud Univ. Sci., 2022, 34(5), 102059 |
37 | Singh J., Roy S., Tran T. T., Akhtar S., Lee E., Kim J., Surf. Interfaces, 2023, 39,102915 |
38 | Gong L., Zhao Q., Wu S., Yin Z. Z., Wu D., Cai W., Kong Y., Langmuir, 2021, 37(49), 14454—14462 |
39 | Wang M., Li C. H., Zhou M. L., Xia Z. N., Huang Y. K., Green Chem., 2022, 24(17), 6696—6706 |
40 | Ahmad K., Kumar P., Mobin S. M., Nanoscale Adv., 2020, 2(1), 502—511 |
41 | Jia D. Z., Yang T., Wang K., Zhou L. L., Wang E. H., Chou K. C., Wang H. L., Hou X. M., J. Alloy. Compd., 2024, 985,173392 |
42 | Hsine Z., Blili S., Milka R., Dorizon H., Said A. H., Korri⁃Youssoufi H., Anal. Bioanal. Chem., 2020, 412(18), 4433—4446 |
43 | Wang H., Xie A., Li S., Wang J., Chen K., Su Z., Song N., Luo S., Anal. Chim. Acta, 2022, 1211,339907 |
44 | Wang X., Long C. C., Jiang Z. X., Qing T. P., Zhang K. W., Zhang P., Feng B., Anal. Methods, 2019, 11(36), 4580—4585 |
45 | Witmer J. R., Wetherell B. J., Wagner B. A., Du J., Cullen J. J., Buettner G. R., Redox Biol., 2016, 8,298—304 |
46 | Duan X. X., Bai Z. X., Shao X. T., Xu J., Yan N., Shi J. Y., Wang X. H., Materials, 2018, 11(5), 674S |
[1] | CHEN Xiaoping, WANG Xutan, LIU Ning, WANG Qingxiang, NI Jiancong, YANG Weiqiang, LIN Zhenyu. MOFs-based Microfluidic Chips for Real-time Online Determination of Multiple Heavy Metal Ions [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230395. |
[2] | LI Yulong, XIE Fating, GUAN Yan, LIU Jiali, ZHANG Guiqun, YAO Chao, YANG Tong, YANG Yunhui, HU Rong. A Ratiometric Electrochemical Sensor Based on Silver Ion Interaction with DNA for the Detection of Silver Ion [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220202. |
[3] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[4] | WEI Chuangyu, CHEN Yanli, JIANG Jianzhuang. Fabrication of Electrochemical Sensor for Dopamine and Uric Acid Based on a Novel Dimeric Phthalocyanine-involved Quintuple-decker Modified Indium Tin Oxide Electrode [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210582. |
[5] | FU Kefei, LIAN Huiting, WEI Xiaofeng, SUN Xiangying, LIU Bin. Construction of Cyclodextrin-based Impedance Sensor for Recognition of L-Cysteine † [J]. Chem. J. Chinese Universities, 2020, 41(4): 706. |
[6] | LI Botian,SHAO Wei,XIAO Da,ZHOU Xue,DONG Junwei,TANG Liming. Polypyrrole Nanowire Gels Based on Templating Fabrication and Their Energy Storage and Electrochemical Sensing Properties † [J]. Chem. J. Chinese Universities, 2020, 41(1): 183. |
[7] |
CHEN Hong,DU Yonghui,ZHANG Xin,LIU Wenyan,ZHOU Xiaoming.
Preparation and Electrochemical Properties of Poly(3-hexylthiophene)-coated Lithium-rich Layered Cathode Material Li1.18Ni0.15Co0.15Mn0.52 |
[8] | ZHANG Sihang, HE Yongfeng, FU Runfang, JIANG Jie, LI Qingbi, GU Yingchun, CHEN Sheng. Preparation and Electrochromic Properties of Nano Cellulose/Poly(3,4-ethylenedioxythiophene) Composite Films† [J]. Chem. J. Chinese Universities, 2017, 38(6): 1090. |
[9] | LI Min, KONG Huifang, GUO Zhihui. Detection of Copper Ion Based on the Interaction Between DNA Molecules and Copper Ions† [J]. Chem. J. Chinese Universities, 2016, 37(7): 1269. |
[10] | HU Yiping, SHAN Duoliang, LU Xiaoquan. Nonenzyme Sensor Based on Metal Organic Frameworks/Porphyrin/Multiwalled Carbon Nanotubes for Detection of Glucose† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1082. |
[11] | ZHANG Yan, ZHENG Jing, WANG Juan, GUO Mandong. Preparation and Properties of Doxorubicin Hydrochloride Sensor Based on Molecularly Imprinted Polymer† [J]. Chem. J. Chinese Universities, 2016, 37(5): 860. |
[12] | ZHUANG Qianfen, WANG Yong, NI Yongnian. Electrochemical Sensor for the Detection of Riboflavin Based on Nanocomposite Film of Polydeoxyadenylic Acid/Reduced Graphene Oxide† [J]. Chem. J. Chinese Universities, 2015, 36(9): 1674. |
[13] | HUANG Xueyi, YU Huicheng, WEI Yichun, LEI Fuhou, TAN Xuecai, WU Haiying. Preparation and Application of Novel Amobarbital Electrochemical Sensor Based on CuO Nanoparticles Modified Glassy Carbon† [J]. Chem. J. Chinese Universities, 2014, 35(10): 2078. |
[14] | LIU Zhaoyuan, DING Chunmei, ZHU Ying, WAN Meixiang, JIANG Lei. Electrochemical Synthesis of Micro/nanostructured Poly(3,4-ethylenedioxythiophene) Films with Underwater Superoleophobicity† [J]. Chem. J. Chinese Universities, 2014, 35(1): 98. |
[15] | ZHANG Jin, WANG Chao-Ying, LI Xiao-Ping, NIU Yan-Hui. Molecularly Imprinted Electrochemical Sensor for 2, 4-Dichlorophenol Based on Composite Film of o-Aminothiophenol and Au Nanoparticles [J]. Chem. J. Chinese Universities, 2013, 34(10): 2296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||