Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (1): 20230418.doi: 10.7503/cjcu20230418
• Physical Chemistry • Previous Articles Next Articles
HENG Panpan, ZHANG Mi, HOU Hua, WANG Baoshan()
Received:
2023-09-21
Online:
2024-01-10
Published:
2023-10-23
Contact:
WANG Baoshan
E-mail:baoshan@whu.edu.cn
Supported by:
CLC Number:
TrendMD:
HENG Panpan, ZHANG Mi, HOU Hua, WANG Baoshan. Composite Chemical Bond Theory for Dielectric Strength of the Gases Insulation[J]. Chem. J. Chinese Universities, 2024, 45(1): 20230418.
No. | Formula | Er,exp. | RMSD | MAD | MRD | No. | Formula | Er,exp. | RMSD | MAD | MRD |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | SF6 | 1.00 | -0.03 | 0 | 0 | 33 | CF3SO2F | 1.43 | -0.05 | -0.02 | -0.12 |
2 | SF5CF3 | 1.53 | 0.03 | 0.05 | 0.05 | 34 | CF3CN | 1.50 | 0.01 | 0.01 | 0.01 |
3 | CF4 | 0.43 | -0.10 | -0.02 | -0.02 | 35 | C2F5CN | 1.98 | -0.10 | -0.13 | -0.12 |
4 | CCl4 | 2.36 | -0.11 | -0.04 | -0.73 | 36 | C3F7CN | 2.50 | -0.26 | -0.30 | -0.30 |
5 | CF3Cl | 0.60 | 0.21 | 0.28 | 0.12 | 37 | i⁃C3F7CN | 2.20 | 0.04 | 0 | 0 |
6 | CF3I | 1.21 | 0.16 | 0.05 | 0.31 | 38 | CF3OCF(CF3)CN | 1.94 | 0.30 | 0.33 | 0.34 |
7 | CFCl3 | 1.84 | -0.07 | 0 | -0.51 | 39 | CF3OCF3 | 0.84 | -0.14 | -0.02 | 0 |
8 | CF2Cl2 | 1.06 | 0.23 | 0.30 | -0.04 | 40 | CF3OC2F5 | 1.24 | -0.17 | -0.08 | -0.06 |
9 | CF2ClBr | 1.32 | -0.02 | 0 | -0.17 | 41 | (C2F5)2O | 1.51 | -0.08 | 0 | 0.02 |
10 | CF3Br | 0.76 | 0.06 | 0.08 | 0.09 | 42 | c⁃C4F8O | 1.38 | 0.08 | 0.07 | 0.08 |
11 | C2F6 | 0.80 | -0.10 | -0.05 | -0.05 | 43 | CF3SCF3 | 1.50 | 0.01 | 0 | 0 |
12 | C3F8 | 0.98 | 0.09 | 0.12 | 0.12 | 44 | C2F5CFO | 1.59 | -0.07 | 0 | 0 |
13 | C4F10 | 1.32 | 0.11 | 0.12 | 0.12 | 45 | i⁃C3F7C(O)CF3 | 2.10 | 0.15 | 0.18 | 0.18 |
14 | C5F12 | 1.75 | 0.05 | 0.04 | 0.04 | 46 | i⁃C3F7C(O)C2F5 | 2.70 | -0.08 | -0.07 | -0.08 |
15 | C6F14 | 2.26 | -0.10 | -0.13 | -0.13 | 47 | CF3NO2 | 1.34 | 0 | 0 | 0 |
16 | CF3CF2Cl | 1.15 | 0.03 | 0.08 | -0.09 | 48 | SF3≡N | 1.37 | 0 | 0 | 0 |
17 | CF2ClCF2Cl | 1.71 | -0.05 | 0 | -0.34 | 49 | CF3N=SF2 | 2.41 | 0 | 0 | 0 |
18 | CF2ClCFCl2 | 2.37 | -0.24 | -0.18 | -0.70 | 50 | CH3Cl | 0.32 | 0.08 | 0.17 | 0 |
19 | CF3CCl3 | 2.47 | -0.34 | -0.28 | -0.80 | 51 | CH3Br | 0.45 | -0.04 | 0 | 0 |
20 | c⁃C4F8 | 1.28 | 0.18 | 0.10 | 0.10 | 52 | CH3I | 1.12 | -0.16 | -0.26 | 0 |
21 | c⁃C6F12 | 2.35 | -0.16 | -0.28 | -0.29 | 53 | CH2Cl2 | 0.64 | 0.37 | 0.46 | 0.12 |
22 | c⁃C7F14 | 2.24 | 0.32 | 0.18 | 0.17 | 54 | CHCl3 | 1.77 | -0.14 | -0.06 | -0.57 |
23 | c⁃C4F6 | 1.60 | -0.13 | -0.24 | -0.24 | 55 | CHF3 | 0.27 | -0.07 | 0.01 | 0.01 |
24 | c⁃C5F8 | 2.10 | -0.26 | -0.40 | -0.39 | 56 | CHF2Cl | 0.44 | 0.23 | 0.31 | 0.14 |
25 | c⁃C6F10 | 2.05 | 0.15 | 0 | 0 | 57 | CHFCl2 | 0.92 | 0.23 | 0.31 | -0.03 |
26 | CF2=CFCl | 0.69 | 0.50 | 0.52 | 0.36 | 58 | CH2F2 | 0.27 | -0.21 | -0.13 | -0.12 |
27 | CF2=CFCF3 | 1.01 | 0.06 | 0.07 | 0.07 | 59 | CH2FCl | 0.39 | 0.14 | 0.23 | 0.06 |
28 | CF3CF=CFCF3 | 1.66 | -0.22 | -0.24 | -0.23 | 60 | CHF=CHCF3 | 0.85 | -0.05 | -0.04 | -0.03 |
29 | CF2=CF—CF=CF2 | 1.40 | 0.05 | 0 | 0.02 | 61 | CH3CH2Cl | 0.40 | 0.09 | 0.18 | 0 |
30 | CF3C≡CCF3 | 2.19 | 0 | 0 | 0 | 62 | CH3CF3 | 0.41 | -0.13 | -0.05 | -0.05 |
31 | SOF2 | 1.42 | 0 | 0 | 0 | 63 | CH2=CHCF3 | 0.80 | -0.14 | -0.12 | -0.11 |
32 | SO2F2 | 0.73 | 0.05 | 0.10 | 0 |
Table 1 Experimental dielectric strengths for 63 insulating gases with respect to SF6 and the errors of the theoretical data calculated by the chemical bond composite models for 3 goal functions
No. | Formula | Er,exp. | RMSD | MAD | MRD | No. | Formula | Er,exp. | RMSD | MAD | MRD |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | SF6 | 1.00 | -0.03 | 0 | 0 | 33 | CF3SO2F | 1.43 | -0.05 | -0.02 | -0.12 |
2 | SF5CF3 | 1.53 | 0.03 | 0.05 | 0.05 | 34 | CF3CN | 1.50 | 0.01 | 0.01 | 0.01 |
3 | CF4 | 0.43 | -0.10 | -0.02 | -0.02 | 35 | C2F5CN | 1.98 | -0.10 | -0.13 | -0.12 |
4 | CCl4 | 2.36 | -0.11 | -0.04 | -0.73 | 36 | C3F7CN | 2.50 | -0.26 | -0.30 | -0.30 |
5 | CF3Cl | 0.60 | 0.21 | 0.28 | 0.12 | 37 | i⁃C3F7CN | 2.20 | 0.04 | 0 | 0 |
6 | CF3I | 1.21 | 0.16 | 0.05 | 0.31 | 38 | CF3OCF(CF3)CN | 1.94 | 0.30 | 0.33 | 0.34 |
7 | CFCl3 | 1.84 | -0.07 | 0 | -0.51 | 39 | CF3OCF3 | 0.84 | -0.14 | -0.02 | 0 |
8 | CF2Cl2 | 1.06 | 0.23 | 0.30 | -0.04 | 40 | CF3OC2F5 | 1.24 | -0.17 | -0.08 | -0.06 |
9 | CF2ClBr | 1.32 | -0.02 | 0 | -0.17 | 41 | (C2F5)2O | 1.51 | -0.08 | 0 | 0.02 |
10 | CF3Br | 0.76 | 0.06 | 0.08 | 0.09 | 42 | c⁃C4F8O | 1.38 | 0.08 | 0.07 | 0.08 |
11 | C2F6 | 0.80 | -0.10 | -0.05 | -0.05 | 43 | CF3SCF3 | 1.50 | 0.01 | 0 | 0 |
12 | C3F8 | 0.98 | 0.09 | 0.12 | 0.12 | 44 | C2F5CFO | 1.59 | -0.07 | 0 | 0 |
13 | C4F10 | 1.32 | 0.11 | 0.12 | 0.12 | 45 | i⁃C3F7C(O)CF3 | 2.10 | 0.15 | 0.18 | 0.18 |
14 | C5F12 | 1.75 | 0.05 | 0.04 | 0.04 | 46 | i⁃C3F7C(O)C2F5 | 2.70 | -0.08 | -0.07 | -0.08 |
15 | C6F14 | 2.26 | -0.10 | -0.13 | -0.13 | 47 | CF3NO2 | 1.34 | 0 | 0 | 0 |
16 | CF3CF2Cl | 1.15 | 0.03 | 0.08 | -0.09 | 48 | SF3≡N | 1.37 | 0 | 0 | 0 |
17 | CF2ClCF2Cl | 1.71 | -0.05 | 0 | -0.34 | 49 | CF3N=SF2 | 2.41 | 0 | 0 | 0 |
18 | CF2ClCFCl2 | 2.37 | -0.24 | -0.18 | -0.70 | 50 | CH3Cl | 0.32 | 0.08 | 0.17 | 0 |
19 | CF3CCl3 | 2.47 | -0.34 | -0.28 | -0.80 | 51 | CH3Br | 0.45 | -0.04 | 0 | 0 |
20 | c⁃C4F8 | 1.28 | 0.18 | 0.10 | 0.10 | 52 | CH3I | 1.12 | -0.16 | -0.26 | 0 |
21 | c⁃C6F12 | 2.35 | -0.16 | -0.28 | -0.29 | 53 | CH2Cl2 | 0.64 | 0.37 | 0.46 | 0.12 |
22 | c⁃C7F14 | 2.24 | 0.32 | 0.18 | 0.17 | 54 | CHCl3 | 1.77 | -0.14 | -0.06 | -0.57 |
23 | c⁃C4F6 | 1.60 | -0.13 | -0.24 | -0.24 | 55 | CHF3 | 0.27 | -0.07 | 0.01 | 0.01 |
24 | c⁃C5F8 | 2.10 | -0.26 | -0.40 | -0.39 | 56 | CHF2Cl | 0.44 | 0.23 | 0.31 | 0.14 |
25 | c⁃C6F10 | 2.05 | 0.15 | 0 | 0 | 57 | CHFCl2 | 0.92 | 0.23 | 0.31 | -0.03 |
26 | CF2=CFCl | 0.69 | 0.50 | 0.52 | 0.36 | 58 | CH2F2 | 0.27 | -0.21 | -0.13 | -0.12 |
27 | CF2=CFCF3 | 1.01 | 0.06 | 0.07 | 0.07 | 59 | CH2FCl | 0.39 | 0.14 | 0.23 | 0.06 |
28 | CF3CF=CFCF3 | 1.66 | -0.22 | -0.24 | -0.23 | 60 | CHF=CHCF3 | 0.85 | -0.05 | -0.04 | -0.03 |
29 | CF2=CF—CF=CF2 | 1.40 | 0.05 | 0 | 0.02 | 61 | CH3CH2Cl | 0.40 | 0.09 | 0.18 | 0 |
30 | CF3C≡CCF3 | 2.19 | 0 | 0 | 0 | 62 | CH3CF3 | 0.41 | -0.13 | -0.05 | -0.05 |
31 | SOF2 | 1.42 | 0 | 0 | 0 | 63 | CH2=CHCF3 | 0.80 | -0.14 | -0.12 | -0.11 |
32 | SO2F2 | 0.73 | 0.05 | 0.10 | 0 |
Bond | Er,B | Bond | Er,B | ||||
---|---|---|---|---|---|---|---|
RMSD | MAD | MRD | RMSD | MAD | MRD | ||
C—H | -0.0547 | -0.0293 | -0.0294 | C—N | 0.8994 | 0.8478 | 0.8445 |
C—F | 0.0836 | 0.1015 | 0.1026 | C≡N | 1.0630 | 1.0632 | 1.0659 |
C—Cl | 0.5613 | 0.5795 | 0.4081 | N=O | 0.0949 | 0.0939 | 0.0939 |
C—Br | 0.5715 | 0.5372 | 0.5375 | S—F | 0.1610 | 0.1665 | 0.1667 |
C—I | 1.1223 | 0.9517 | 1.2091 | S—C | 0.5048 | 0.4456 | 0.4423 |
C—C | 0.1983 | 0.1422 | 0.1387 | S4=O | 1.0981 | 1.0869 | 1.0867 |
C=C | 0.3742 | 0.3245 | 0.3308 | S6=O | 0.2304 | 0.2491 | 0.1983 |
C≡C | 1.2920 | 1.2969 | 1.2972 | S=N | 0.9379 | 0.9248 | 0.9245 |
C—O | 0.1001 | 0.1055 | 0.1116 | S≡N | 0.8871 | 0.8704 | 0.8700 |
C=O | 0.6230 | 0.6969 | 0.6972 |
Table 2 Characteristic dielectric strengths of the chemical bonds optimized by 3 goal functions
Bond | Er,B | Bond | Er,B | ||||
---|---|---|---|---|---|---|---|
RMSD | MAD | MRD | RMSD | MAD | MRD | ||
C—H | -0.0547 | -0.0293 | -0.0294 | C—N | 0.8994 | 0.8478 | 0.8445 |
C—F | 0.0836 | 0.1015 | 0.1026 | C≡N | 1.0630 | 1.0632 | 1.0659 |
C—Cl | 0.5613 | 0.5795 | 0.4081 | N=O | 0.0949 | 0.0939 | 0.0939 |
C—Br | 0.5715 | 0.5372 | 0.5375 | S—F | 0.1610 | 0.1665 | 0.1667 |
C—I | 1.1223 | 0.9517 | 1.2091 | S—C | 0.5048 | 0.4456 | 0.4423 |
C—C | 0.1983 | 0.1422 | 0.1387 | S4=O | 1.0981 | 1.0869 | 1.0867 |
C=C | 0.3742 | 0.3245 | 0.3308 | S6=O | 0.2304 | 0.2491 | 0.1983 |
C≡C | 1.2920 | 1.2969 | 1.2972 | S=N | 0.9379 | 0.9248 | 0.9245 |
C—O | 0.1001 | 0.1055 | 0.1116 | S≡N | 0.8871 | 0.8704 | 0.8700 |
C=O | 0.6230 | 0.6969 | 0.6972 |
1 | Simmonds P. G., Rigby M., Manning A. J., Park S., Stanley K. M., McCulloch A., Henne S., Graziosi F., Maione M., Arduini J., Reimann S., Vollmer M. K., Mühle J., O'Doherty S., Young D., Krummel P. B., Fraser P. J., Weiss R. F., Salameh P. K., Harth C. M., Park M. K., Park H., Arnold T., Rennick C., Steele L. P., Mitrevski B., Wang R. H. J., Prinn R. G., Atmos. Chem. Phys., 2020, 20(12), 7271—7290 |
2 | Franck C. M., Chachereau A., Pachin J., IEEE Electr. Insul. Mag., 2021, 37(1), 7—16 |
3 | Katagiri H., Kasuya H., Mizoguchi H., Yanabu S., IEEE Trans. Dielectr. Electr. Insul., 2008, 15(5), 1424—1429 |
4 | Kieffel Y., Irwin T., Ponchon P., Owens J., IEEE Power Energy Mag., 2016, 14(2), 32—39 |
5 | Mantilla J. D., Gariboldi N., Grob S., Claessens M., IEEE Electr. Insul. Conf., 2014, 32(1), 469—473 |
6 | Koch M., Franck C. M., IEEE Trans. Dielectr. Electr. Insul., 2015, 22(6), 3260—3268 |
7 | Beroual A., Haddad A., Energies, 2017, 10(8), 1216 |
8 | Rabie M., Franck C. M., Environ. Sci. Technol., 2018, 52(2), 369—380 |
9 | Tian S., Zhang X., Cressault Y., Hu J., Wang B., Xiao S., Li Y., Kabbaj N., AIP Adv., 2020, 10(5), 050702 |
10 | Rabie M., Franck C. M., IEEE Trans. Dielectr. Electr. Insul., 2015, 22(1), 296—302 |
11 | Zhang M., Gao K. L., Hou H., Wang B. S., High Voltage Engineering, 2023, 49(7), 2816—2830 |
张咪, 高克利, 侯华, 王宝山. 高电压技术, 2023, 49(7), 2816—2830 | |
12 | Brand K. P., IEEE Trans. Electr. Insul., 1982, 17(5), 451—456 |
13 | Zhang B., Chen L., Li X., Guo Z., Pu Y., Tang N., IEEE Trans. Dielectr. Electr. Insul., 2020, 27(4), 1187—1194 |
14 | Meurice N., Sandre E., Aslanides A., VercauterenD. P., IEEE Trans. Dielectr. Electr. Insul., 2004, 11(6), 946—948 |
15 | Rabie M., Dahl D. A., Donald S. M. A., Reiher M., Franck C. M., IEEE Trans. Dielectr. Electr. Insul., 2013, 20(3), 856—863 |
16 | Zhang C., Shi H., Cheng L., Zhao K., Xie X., Ma H., IEEE Trans. Dielectr. Electr. Insul., 2016, 23(5), 2572—2578 |
17 | Yu X., Hou H., Wang B., J. Comput. Chem., 2017, 38(10), 721—729 |
18 | Hou H., Yu X. J., Zhou W. J., Luo Y. B., Wang B. S., Chem. J. Chinese Universities, 2018, 39(11), 2477—2484 |
侯华, 余小娟, 周文俊, 罗运柏, 王宝山. 高等学校化学学报, 2018, 39(11), 2477—2484 | |
19 | Sun H., Liang L., Wang C., Wu Y., Yang F., Rong M., IEEE Access, 2020, 8(12), 4204—4216 |
20 | Hou H., Wang B. S., Chem. J. Chinese Universities, 2021, 42(12), 3709—3715 |
侯华, 王宝山. 高等学校化学学报, 2021, 42(12), 3709—3715 | |
21 | Lewis G. N., J. Am. Chem. Soc., 1916, 38(4), 762—785 |
22 | Pauling L., J. Am. Chem. Soc., 1931, 53(6), 1367—1400 |
23 | Feynman R. P., Phys. Rev., 1939, 56(4), 340—343 |
24 | Fradera X., Austen M. A., Bader R. F. W., J. Phys. Chem. A, 1999, 103(2), 304—314 |
25 | Hoffmann R., Shaik S., Hiberty P. C., Acc. Chem. Res., 2003, 36(10), 750—756 |
26 | Wu W., Su P., Shaik S., Hiberty P. C., Chem. Rev., 2011, 111(11), 7557—7593 |
27 | Bader R. F. W., Chem. Rev., 1991, 91(5), 893—928 |
28 | Levine D. S., Head⁃Gordon M., Proc. Natl. Acad. Sci. USA, 2017, 114(48), 12649—12656 |
29 | Savin A., Nesper R., Wengert S., Fassler T. F., Angew. Chem. Int. Ed., 1997, 36(17), 1808—1832 |
30 | Kraka E., Zou W., Tao Y., WIREs: Comput. Mol. Sci., 2020, 10(5), e1480 |
31 | Santos C. V., Monteiro S. A., Soares A. S. C., Souto I. C., Moura R. T., J. Phys. Chem. A, 2023, 127(38), 7997—8014 |
32 | First Optimization, Rev. 10.0, 7D⁃Soft High Technology Inc., Beijing, 2022 |
33 | Pophristic V., Goodman L., Nature, 2001, 411(6837), 565—568 |
34 | Ghasemitabar H., Movagharnejad K., Fluid Phase Equilib., 2016, 411(1), 13—23 |
35 | Joback K. G., Reid R. C., Chem. Eng. Commun., 1987, 57(1), 233—243 |
36 | Lee A., Frost L. S., IEEE Trans. Plasma Sci., 1980, 8(4), 362—367 |
37 | Banks R. E., Barlow M. G., Davies W. H., Haszeldine R. N., Müllen K., Taylor D. R., Tetrahedron Lett., 1968, 36(7), 3909—3910 |
[1] | JIA Changqing, MA Rui, QIAN Xicheng, QIN Zhaohai, XU Houqiang. Synthesis, Characterization, Biological Activity and Structure-activity Relationship of 6-N-heterocyclic Substituted Sanguinarine Derivatives [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230231. |
[2] | FENG Linyan, HU Xiaobo, YAN Miao, MIAO Changqing, CHEN Rui, GUO Jinchang, WANG Yingjin. Theoretical Study of MB8C4(M=Ca, Sr, Ba) Molecular Wheels Clusters with Dodeca-coordination Number in Plane [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230281. |
[3] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[4] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[5] | GUO Jinchang, LIU Fanglin. Planar Pentacoordinate Silicon and Germanium in XBe5H6(X=Si, Ge) Clusters [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210807. |
[6] | ZHANG Mi, TIAN Yafeng, GAO Keli, HOU Hua, WANG Baoshan. Molecular Dynamics Simulation of the Physicochemical Properties of Trifluoromethanesulfonyl Fluoride Dielectrics [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220424. |
[7] | LI Xiaolei, SUN Yunjiao, TANG Ying, WANG Changsheng. Rapid and Accurate Calculation of the Three⁃body Interaction Strength in the Hydrogen⁃bonded Complexes of Alcohols or Deoxyribose with Water [J]. Chem. J. Chinese Universities, 2021, 42(12): 3664. |
[8] | HOU Hua, WANG Baoshan. Group Additivity Theoretical Model for the Prediction of Dielectric Strengths of the Alternative Gases to SF6 [J]. Chem. J. Chinese Universities, 2021, 42(12): 3709. |
[9] | YE Chenghao, LIANG Heng, LI Enmin, XU Liyan, LI Peng, CHEN Guanghui. High-throughput Virtual Screening of CDK2/Cyclin A2 Target Inhibitors [J]. Chem. J. Chinese Universities, 2021, 42(10): 3135. |
[10] | YE Xiaodong, QI Guodong, XU Jun, DENG Feng. Glucose Oxidation on Au-supported SBA-15 Molecular Sieve [J]. Chem. J. Chinese Universities, 2020, 41(5): 960. |
[11] | WU Ting,CHEN Mengyao,XIAO Kaixia,ZHOU Yanmei,ZHANG Qingyou. Highly Selective Topological Index of Chemical Bonds and Its Applications† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1158. |
[12] | CHANG Junpeng,ZHAO Jiarui,CHEN Sijia,MENG Kai,SHI Weini,LI Ruifang. Structure-activity Relationship of Antimicrobial Peptide SAMP1 and Its Analog Peptides† [J]. Chem. J. Chinese Universities, 2019, 40(4): 705. |
[13] | LIU Yubo, ZHANG Nana, CHEN Jinjiao, ZHU Tong, ZHANG Jianing, LI Wenli. Discovery and Activity Verification of a O-GlcNAc Transferase Inhibitor by Structure-based Virtual Screening† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1185. |
[14] | SHI Yanli, LIU Yubo, WU Sijin, LIU Yajun, ZHANG Jianing, LI Wenli. Virtual Screening and Activity Verification of Novel Inhibitors of ApIV 3C Protease† [J]. Chem. J. Chinese Universities, 2018, 39(4): 701. |
[15] | YU Min, HUANG Jingjing, MA Min, FU Ruiyan, YAN Yan, ZHANG Fusheng, YIN Junfeng, XIE Ningning. Zinc Chelating Activity and Quantitative Structure-activity Relationship of Tripeptides† [J]. Chem. J. Chinese Universities, 2018, 39(2): 234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||