Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (10): 3135.doi: 10.7503/cjcu20210405
• Physical Chemistry • Previous Articles Next Articles
YE Chenghao1, LIANG Heng1, LI Enmin2, XU Liyan2, LI Peng3, CHEN Guanghui1()
Received:
2021-06-15
Online:
2021-10-10
Published:
2021-10-10
Contact:
CHEN Guanghui
E-mail:ghchen@stu.edu.cn
Supported by:
CLC Number:
TrendMD:
YE Chenghao, LIANG Heng, LI Enmin, XU Liyan, LI Peng, CHEN Guanghui. High-throughput Virtual Screening of CDK2/Cyclin A2 Target Inhibitors[J]. Chem. J. Chinese Universities, 2021, 42(10): 3135.
Species | Docking score | |
---|---|---|
(-19.1, -23.9) | (-23.9, -28.7) | |
Count of molecules by XGBoost predicted | 367 | 133 |
Count of molecules by docking verified | 405 | 95 |
Species | Docking score | |
---|---|---|
(-19.1, -23.9) | (-23.9, -28.7) | |
Count of molecules by XGBoost predicted | 367 | 133 |
Count of molecules by docking verified | 405 | 95 |
Compound | EvDWa/(kJ·mol-1) | Eeleb/(kJ·mol-1) | GPBc /(kJ·mol-1) | Gnonpolard/(kJ·mol-1) | Gbinde /(kJ·mol-1) |
---|---|---|---|---|---|
DrugBank?2004 | -212.0 | -76.7 | 151.8 | -19.8 | -157.0 |
DrugBank?583 | -191.2 | -115.9 | 182.4 | -20.6 | -145.3 |
ChEMBL?7122 | -215.3 | -142.0 | 226.1 | -19.1 | -150.6 |
Roscovitine | -200.0 | -57.4 | 154.4 | -20.6 | -123.6 |
Compound | EvDWa/(kJ·mol-1) | Eeleb/(kJ·mol-1) | GPBc /(kJ·mol-1) | Gnonpolard/(kJ·mol-1) | Gbinde /(kJ·mol-1) |
---|---|---|---|---|---|
DrugBank?2004 | -212.0 | -76.7 | 151.8 | -19.8 | -157.0 |
DrugBank?583 | -191.2 | -115.9 | 182.4 | -20.6 | -145.3 |
ChEMBL?7122 | -215.3 | -142.0 | 226.1 | -19.1 | -150.6 |
Roscovitine | -200.0 | -57.4 | 154.4 | -20.6 | -123.6 |
1 | Morgan D. O., Nature, 1995, 374, 131―134 |
2 | Martin A., Odajima J., Hunt S. L., Dubus P., Ortega S., Malumbres M., Barbacid M., Cancer Cell, 2005, 7, 591―598 |
3 | Bagella L., Sun A., Tonini T., Abbadessa G., Cottone G., Paggi M. G., de Luca A., Claudio P. P., Giordano A., Oncogene, 2007, 26(13), 1829―1839 |
4 | HL De Bondt J. R., Jancarik J., Jones H. D., Morgant D. O., Kim S. H., Nature, 1993,363, 595―602 |
5 | Elgazwy A. S., Ismail N. S., Elzahabi H. S., Bioorg. Med. Chem., 2010, 18(21), 7639―7650 |
6 | Xiao C., Sun C., Han W., Pan F., Dan Z., Li Y., Song Z. G., Jin Y. H., Bioorg. Med. Chem., 2011, 19(23),7100―7110 |
7 | Mahajan P., Chashoo G., Gupta M., Kumar A., Singh P. P., Nargotra A., J. Chem. Inf. Model,2017, 57(8), 1957―1969 |
8 | Prehoda K. E., Lim W. A., Current Opinion in Cell Biology, 2002, 14(2), 149―154 |
9 | Kim S. J., Nakayama S., Miyoshi Y., Taguchi T., TamakiY. T., Matsushima Y., Torikoshi S., Tanaka T., Yoshida H., Ishihara S., Noguchi, Annals of Oncology, 2008, 19(1), 68―72 |
10 | Ravindranath M. H., Kelley M. C., Jones R. C., Amiri A. A., Bauer P. M., Morton D. L., International J. Cancer, 1998, 75(1), 117―124 |
11 | Kontopidis G.M., Pandalaneni C., McNae S. R., Gibson I., Mezna D., Thomas M., Wood M., Wang G., Walkinshaw S., Fischer M. D., Chem. Biol.,2006, 13(2), 201―211 |
12 | Klon A. E., Lowrie J. F., Diller D. J., ChemInform,2006, 46(5), 1945―1956 |
13 | Bettayeb K., Sallam H., Ferandin Y., Popowycz F., Fournet G., Hassan M., Echalier A., Bernard P., Endicott J., Joseph B., Meijer L., Mol. Cancer Ther., 2008, 7(9), 2713―2724 |
14 | Bettayeb K., Tirado O. M., Marionneau⁃Lambot S., Ferandin Y., Lozach O., Morris J. C., Mateo⁃Lozano S., Drueckes P., Schachtele C., Kubbutat M. H., Liger F., Marquet B., Joseph B., Echalier A., Endicott J. A., Notario V., Meijer L., Cancer Res.,2007,67(17), 8325―8334 |
15 | Wishart D. S., Feunang Y. D., Guo A. C., Lo E. J., Marcu A., Grant J. R., Sajed T., Johnson D., Li C., Sayeeda Z., Assempour N., Iynkkaran I., Liu Y., Maciejewski A., Gale N., Wilson A., Chin L., Cummings R., Le D., Pon A., Knox C., Wilson M., Nucleic Acids Res., 2018, 46, 1074―1082 |
16 | Mendez D., Gaulton A., Bento A. P., Chambers J., de Veij M., Felix E., Magarinos M. P., Mosquera J. F., Mutowo P., Nowotka M., Gordillo⁃Maranon M., Hunter F., Junco L., Mugumbate G., Rodriguez⁃Lopez M., Atkinson F., Bosc N., Radoux C. J., Segura⁃Cabrera A., Hersey A., Leach A. R., Nucleic Acids Res., 2019, 47, 930―940 |
17 | Chen C. Y., PLoS One, 2011, 6(1), e15939 |
18 | Filgueira de Azevedo W. Jr., Leclerc S., Meijer L., Havlicek L., Strnad M., Kim S. H., European J. Biochem., 1997, 243(1/2), 518―526 |
19 | Bettayeb K., Oumata N., Echalier A., Ferandin Y., Endicott J. A., Galons H., Meijer L., Oncogene, 2008,27(44), 5797―5807 |
20 | Guex N., Electrophoresis, 1997, 18(15), 2714―2723 |
21 | Chemical Computing Group Inc., Molecular Operating Environment(MOE), Version 2015, Montreal, QC, 2015 |
22 | Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J., Advanced Drug Delivery Reviews,2012, 64(1―3), 4―17 |
23 | Trott O., Olson A. J., J. Comput. Chem., 2010, 31(2), 455―461 |
24 | Llewellyn P. L., Bourrelly S., Serre C., Vimont A., Férey G., Langmuir, 2008, 24(12), 7245―7250 |
25 | Banerjee P., Dehnbostel F. O., Preissner R., Front. Chem., 2018, 6, 362 |
26 | Banerjee P., Eckert A. O., Schrey A. K., Preissner R., Nucleic Acids Res., 2018, 46, 257―263 |
27 | Silva A., Vranken W. F., BMC Research Notes, 2012,5, 367 |
28 | Case K. B. D. A., Ben⁃Shalom I. Y., Brozell S. R., Cerutti D. S., Cheatham T. E. III, Cruzeiro V. W. D., Darden T. A., Duke R. E., Giambasu G., Gilson M. K., Gohlke H., Goetz A. W., Harris R., Izadi S., Liu Izmailov S. A., Kasavajhala K., Kovalenko A., Krasny R., Kurtzman T., Lee T. S., LeGrand S., Li P., Lin C. J., Luchko T., Luo R., Man V., Merz K. M., Miao Y., Mikhailovskii O., Monard G., Nguyen H., Onufriev A., Pan F., Pantano S., Qi R., Roe D. R., Roitberg A., Sagui C., Schott⁃Verdugo S., Shen J., Simmerling C., Skrynnikov N. R., Smith J., Swails J., Walker R. C., Wang J., Wilson L., Wolf R. M., Wu X., Xiong Y., Xue Y., York D. M., Kollman P. A., AMBER 2020, University of California, San Francisco, 2020 |
29 | Lindorff⁃Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J. L., Dror R. O., Shaw D. E., Proteins, 2010, 78(8), 1950―1958 |
30 | Lindahl E., Hess B., van der Spoel D., J. Mol. Modeling, 2001,7(22), 306―317 |
31 | Weis A., Katebzadeh K., Derhjelm P. S., Nilsson I., Ryde U., J. Med. Chem., 2006, 49, 6596—6606 |
32 | Hou T., Wang J., Li Y., Wang W., J. Comput. Chem., 2011,32(5), 866―877 |
33 | Kumari R., Kumar R., C., J. Chem. Inf. Model, 2014, 54(7), 1951―1962 |
34 | Johnson E. R., Keinan S., Mori⁃Sanchez P., Contreras⁃Garcia J., Cohen A. J., Yang W., J. Am. Chem. Soc., 2010, 132(18), 6498 |
35 | Contreras⁃Garcia J., Johnson E. R., Keinan S., Chaudret R., Piquemal J. P., Beratan D. N., Yang W., J. Chem. Theory. Comput., 2011, 7(3), 625―632 |
36 | Lu T., Chen F., J. Comput. Chem.,2012, 33(5), 580―592 |
37 | De Moliner E., Brown N. R., Johnson L. N., Eur. J. Biochem.,2003,270(15), 3174―3181 |
38 | Pratt D. J., Bentley J., Jewsbury P., Boyle F. T., Endicott J. A., Noble M. E. M., J. Med. Chem., 2006,49(18), 5470―5477 |
39 | Richardson C. M., Williamson D. S., Parratt M. J., Borgognoni J., Cansfield A. D., Dokurno P., Francis G. L., Howes R., Moore J. D., Murray J. B., Robertson A., Surgenor A. E., Torrance C. J., Bioorg. Med. Chem. Lett.,2006,16(5), 1353―1357 |
40 | Griffin R. J., Henderson A, Curtin N. J., Echalier A., Endicott J. A., Hardcastle I. R., Newell D. R., Noble M. E. M., Wang L., Golding B. T., J. Am. Chem. Soc., 2006, 128(18), 6012―6013 |
41 | Traquandi G., Ciomei M., Ballinari D., Casale E., Colombo N., Croci V., Fiorentini F., Isacchi A., Longo A., Mercurio C., Panzeri A., Pastori W., Pevarello P., Volpi D., Roussel P., Vulpetti A., Brasca M. G., J. Med. Chem., 2010, 53(5), 2171―2187 |
42 | Liaw A., Wiener M., R News, 2002,23(23), 18―22 |
43 | Park D. C., El⁃Sharkawi M. A., Marks II R. J., Atlas Les E., Damborg M. J., Middle East J. Entific Res., 1991, 6, 442―449 |
44 | Chen T., Guestrin C., XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016, 785―794 |
45 | Han X., Gross R. W., Anal. Biochem., 2001, 295(1), 88―100 |
[1] | HUAN Xinyu, LAI Ganqiang, HUANG Yue, YANG Caiguang. Research Progress on Chemical Intervention of N6-methyladenosine Modification [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220340. |
[2] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[3] | WANG Ruina, SUN Ruifen, ZHONG Tianhua, CHI Yuwu. Fabrication of a Dispersible Large-sized Graphene Quantum Dot Assemblies from Graphene Oxide and Its Electrogenerated Chemiluminescence Behaviors [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220161. |
[4] | YAO Yiting, LYU Jiamin, YU Shen, LIU Zhan, LI Yu, LI Xiaoyun, SU Baolian, CHEN Lihua. Preparation of Hierarchical Microporous-mesoporous Fe2O3/ZSM-5 Hollow Molecular Sieve Catalytic Materials and Their Catalytic Properties for Benzylation [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220090. |
[5] | LI Yulong, XIE Fating, GUAN Yan, LIU Jiali, ZHANG Guiqun, YAO Chao, YANG Tong, YANG Yunhui, HU Rong. A Ratiometric Electrochemical Sensor Based on Silver Ion Interaction with DNA for the Detection of Silver Ion [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220202. |
[6] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[7] | HUANG Qiuhong, LI Wenjun, LI Xin. Organocatalytic Enantioselective Mannich-type Addition of 5H-Oxazol-4-ones to Isatin Derived Ketimines [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220131. |
[8] | TAN Yan, YU Shen, LYU Jiamin, LIU Zhan, SUN Minghui, CHEN Lihua, SU Baolian. Efficient Preparation of Mesoporous γ-Al2O3 Microspheres and Performance of Pd-loaded Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220133. |
[9] | HE Beibei, YANG Kuihua, LYU Rui. Construction of Mn-Cu Bimetal Containing Phyllosilicate Nanozyme and Evaluation of the Enzyme-like Properties [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220150. |
[10] | ZHANG Zhicai, WANG Yuge, GU Qianqian, LYU Yongpeng, XIAO Jianshu, YIN Yuan, SUN Hongguo, ZHENG Yafang, SUN Zhaoyan. Flocculation of Fillers in Isoprene Rubber and Its Effects on Properties [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220155. |
[11] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[12] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[13] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[14] | WANG Zhengwen, GAO Fengxiang, CAO Han, LIU Shunjie, WANG Xianhong, WANG Fosong. Synthesis and Property of CO2 Copolymer⁃based UV-curable Polymer [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220236. |
[15] | SHI Naike, ZHANG Ya, SANSON Andrea, WANG Lei, CHEN Jun. Uniaxial Negative Thermal Expansion and Mechanism in Zn(NCN) [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||