Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (1): 20230348.doi: 10.7503/cjcu20230348
• Physical Chemistry • Previous Articles Next Articles
LI Xin1, ZHOU Ying1, WANG Dingnan2, PEI Yong3, WU Bin4(), ZHANG Yiming1(
)
Received:
2023-07-29
Online:
2024-01-10
Published:
2023-10-07
Contact:
WU Bin, ZHANG Yiming
E-mail:13951446@qq.com;zym7307@zafu.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Xin, ZHOU Ying, WANG Dingnan, PEI Yong, WU Bin, ZHANG Yiming. Selective Adsorption and Computational Simulation of MOF/MIPs Based on Boron-affinity Molecular Imprinting Strategy on Salbutamol[J]. Chem. J. Chinese Universities, 2024, 45(1): 20230348.
Site | ρ(r)/a. u. | Eneutral/(kJ·mol-1) | Echarged/(kJ·mol-1) |
---|---|---|---|
1 | 0.0414 | ‒35.5356 | — |
2 | 0.0461 | — | ‒68.5631 |
Table 1 Electron density and predicted energy H-bonding of different sites
Site | ρ(r)/a. u. | Eneutral/(kJ·mol-1) | Echarged/(kJ·mol-1) |
---|---|---|---|
1 | 0.0414 | ‒35.5356 | — |
2 | 0.0461 | — | ‒68.5631 |
Model | EC/eV | EU/eV | ET/eV | ΔE1/eV |
---|---|---|---|---|
UiO⁃66⁃BA⁃SAL | -249198.0115 | -227762.1713 | -21434.6908 | -1.1494 |
UiO⁃66⁃BA⁃NORE | -243855.6438 | -227762.1713 | -16092.6375 | -0.8350 |
UiO⁃66⁃BA⁃TER | -248129.4413 | -227762.1713 | -20366.5459 | -0.7241 |
Table 2 Binding energy of UiO-66-BA with adsorbed substance
Model | EC/eV | EU/eV | ET/eV | ΔE1/eV |
---|---|---|---|---|
UiO⁃66⁃BA⁃SAL | -249198.0115 | -227762.1713 | -21434.6908 | -1.1494 |
UiO⁃66⁃BA⁃NORE | -243855.6438 | -227762.1713 | -16092.6375 | -0.8350 |
UiO⁃66⁃BA⁃TER | -248129.4413 | -227762.1713 | -20366.5459 | -0.7241 |
UiO⁃66⁃BA⁃SAL | UiO⁃66⁃BA⁃NORE | UiO⁃66⁃BA⁃TER | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Atom | Before adsorption | After adsorption | Δe | Atom | Before adsorption | After adsorption | Δe | Atom | Before adsorption | After adsorption | Δe |
O193 | -0.681 | -0.842 | -0.161 | O193 | -0.681 | -0.816 | -0.135 | O193 | -0.681 | -0.738 | -0.057 |
O194 | -0.685 | -0.802 | -0.117 | O194 | -0.685 | -0.756 | -0.071 | O194 | -0.685 | -0.796 | -0.111 |
H195 | 0.418 | 0.449 | 0.031 | H195 | 0.418 | 0.449 | 0.031 | H195 | 0.418 | 0.434 | 0.016 |
H196 | 0.416 | 0.453 | 0.037 | H196 | 0.416 | 0.448 | 0.032 | H196 | 0.416 | 0.464 | 0.048 |
O2 | -0.590 | -0.583 | 0.007 | O2 | -0.581 | -0.548 | 0.033 | O2 | -0.585 | -0.601 | 0.017 |
O36 | -0.620 | -0.648 | -0.028 | O3 | -0.580 | -0.567 | 0.013 | H34 | 0.461 | 0.530 | 0.069 |
H37 | 0.462 | 0.513 | 0.051 | H23 | 0.460 | 0.588 | 0.128 | ||||
H38 | 0.435 | 0.531 | 0.096 |
Table 3 Mulliken charge of UiO-66-BA bound to the adsorbed substance
UiO⁃66⁃BA⁃SAL | UiO⁃66⁃BA⁃NORE | UiO⁃66⁃BA⁃TER | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Atom | Before adsorption | After adsorption | Δe | Atom | Before adsorption | After adsorption | Δe | Atom | Before adsorption | After adsorption | Δe |
O193 | -0.681 | -0.842 | -0.161 | O193 | -0.681 | -0.816 | -0.135 | O193 | -0.681 | -0.738 | -0.057 |
O194 | -0.685 | -0.802 | -0.117 | O194 | -0.685 | -0.756 | -0.071 | O194 | -0.685 | -0.796 | -0.111 |
H195 | 0.418 | 0.449 | 0.031 | H195 | 0.418 | 0.449 | 0.031 | H195 | 0.418 | 0.434 | 0.016 |
H196 | 0.416 | 0.453 | 0.037 | H196 | 0.416 | 0.448 | 0.032 | H196 | 0.416 | 0.464 | 0.048 |
O2 | -0.590 | -0.583 | 0.007 | O2 | -0.581 | -0.548 | 0.033 | O2 | -0.585 | -0.601 | 0.017 |
O36 | -0.620 | -0.648 | -0.028 | O3 | -0.580 | -0.567 | 0.013 | H34 | 0.461 | 0.530 | 0.069 |
H37 | 0.462 | 0.513 | 0.051 | H23 | 0.460 | 0.588 | 0.128 | ||||
H38 | 0.435 | 0.531 | 0.096 |
Model | EM/eV | EU/eV | ET/eV | E | ΔE2/eV |
---|---|---|---|---|---|
UiO⁃66⁃BA⁃SAL⁃1 | -245047.3910 | -227762.1713 | -21434.6908 | -2078.1700 | -6.8689 |
UiO⁃66⁃BA⁃NORE⁃1 | -239618.7461 | -227762.1713 | -16092.6375 | -2078.1700 | 79.7227 |
UiO⁃66⁃BA⁃TER⁃1 | -243978.9403 | -227762.1713 | -20366.5459 | -2078.1700 | -6.5631 |
Table 4 Reaction energy of UiO-66-BA with adsorbed substance
Model | EM/eV | EU/eV | ET/eV | E | ΔE2/eV |
---|---|---|---|---|---|
UiO⁃66⁃BA⁃SAL⁃1 | -245047.3910 | -227762.1713 | -21434.6908 | -2078.1700 | -6.8689 |
UiO⁃66⁃BA⁃NORE⁃1 | -239618.7461 | -227762.1713 | -16092.6375 | -2078.1700 | 79.7227 |
UiO⁃66⁃BA⁃TER⁃1 | -243978.9403 | -227762.1713 | -20366.5459 | -2078.1700 | -6.5631 |
1 | Marques L., Vale N., Int. J. Mol. Sci., 2022, 23(22), 14207 |
2 | Li H. J., Chem. Eng., 2021, 35(2), 48—51 |
李红杰. 化学工程师, 2021, 35(2), 48—51 | |
3 | Zhang K., Tang C. H., Meng Q. S., Du W., Bo T., Zhao Q. Y., Liang X. W., Liu S. S., Zhang Z. X., Zhang J. M., J. Agric. Food. Chem., 2017, 65(13), 2867—2875 |
4 | Li M., Zhang Y. Y., Xue Y. L., Hong X., Cui Y., Liu Z. J., Du D. L., Food Control, 2017, 73, 1039—1044 |
5 | Liu S., Tao X. Q., Food Ferment. Ind., 2017, 43(8), 273—279 |
刘硕, 陶晓奇. 食品与发酵工业, 2017, 43(8), 273—279 | |
6 | Zvereva E. A., Zherdev A. V., Xu C., Dzantiev B. B., Food Control, 2018, 86, 50—58 |
7 | Li Z. Q., Nie W., Wu X. H., Chen Q. L., Wang C., China Feed, 2017, (1), 33—35 |
李政清, 聂婉, 伍晓红, 陈秋玲, 王琤. 中国 饲料, 2017, (1), 33—35 | |
8 | Vasapollo G., Sole R. D., Mergola L., Lazzoi M. R., Scardino A., Scorrano S., Mele G., Int. J. Mol. Sci., 2011, 12(9), 5908—5945 |
9 | Basak S., Venkatram R., Singhal R. S., Food Control, 2022, 139, 109074 |
10 | Ansari S., Trends Analyt. Chem., 2017, 93, 134—151 |
11 | Amiripour F., Ghasemi S., Azizi S. N., Food Chem., 2021, 347, 129034 |
12 | Hua Y. B., Kukkar D., Brown R. J. C., Kim K. H., Crit. Rev. Environ Sci. Technol., 2022, 53(2), 258—289 |
13 | Xu L. H., Pan M. F., Fang G. Z., Wang S., Sens. Actuators B: Chem., 2019, 286, 321—327 |
14 | Wang Y. L., Qiu X. Z., Li Y. Y., Guo H. S., Lu W. G., Nie L. B., J. Nanosci. Nanotechnol., 2020, 20(3), 1807—1813 |
15 | Wang J., Liu W., Luo G., Li Z. J., Zhao C., Zhang H. R., Zhu M. Z., Xu Q., Wang X. Q., Zhao C. M., Qu Y. T., Yang Z. K., Yao T., Li Y. F., Lin Y., Wu Y. E., Li Y. D., Wang J., Energy Environ. Sci., 2018, 11(12), 3375—3379 |
16 | Zhu X. Y., Gu J. L., Zhu J. Y., Li Y. S., Zhao L. M., Shi J. L., Adv. Funct. Mater., 2015, 25(25), 3847—3854 |
17 | Wang F. Y., Feng L., Chin. J. Chromatogr., 2021, 39(10), 1111—1117 |
王枫雅, 冯亮. 色谱, 2021, 39(10), 1111—1117 | |
18 | Liu Z., He H., Acc. Chem. Res., 2017, 50(9), 2185—2193 |
19 | Wang X. S., Zhao W. S., Liu J. B., Tang S. S., Jin R. F., Theor. Chem. Acc., 2021, 140(1), 11 |
20 | Zhao W. S., Liu J. B., Tang S. S., Jin R. F., J. Mol. Model., 2020, 26(4), 88 |
21 | Zeng H. N., Yu X., Wan J. F., Cao X. J., J. Chromatogr. A, 2021, 1642, 461969 |
22 | Sajini T., Thomas R., Mathew B., Chin. J. Polym. Sci., 2019, 37(12), 1305—1318 |
23 | Xu W. Z., Wang Y. C., Huang W. H., Yu L., Yang Y. F., Liu H., Yang W. M., J. Sep. Sci., 2017, 40(5), 1091—1098 |
24 | Liu J. B., Zhao W. S., Wang G. Y., Tang S. S., Jin R. F., Liu J. B., Anal. Methods, 2020, 12(6), 813—821 |
25 | Liu J., Zhang Z. T., Yang L. W., Fan Y. M., Liu Y. S., J. Mol. Graph. Model., 2019, 88, 228—236 |
26 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams⁃Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16, Rev. C.01, Gaussian Inc., Wallingford CT, 2016 |
27 | Materials Studio 2018, Dassault Systèmes, San Diego, 2018 |
28 | Lu T., Chen F. W., J. Comput. Chem., 2012, 33(5), 580—592 |
29 | Humphrey W., Dalke A., Schulten K., J. Mol. Graphics, 1996, 14(1), 33—38 |
30 | Piletsky S. A., Panasyuk T. L., Piletskaya E. V., Nicholls I. A., Ulbricht M., J. Membr. Sci., 1999, 157(2), 263—278 |
31 | Zhang B. C., Fan X., Zhao D. Y., Polymers, 2018, 11(1), 17 |
32 | Lu T., Chen Q. X., J. Comput. Chem., 2022, 43(8), 539—555 |
33 | Emamian S., Lu T., Kruse H., Emamian H., J. Comput. Chem., 2019, 40(32), 2868—2881 |
34 | Bie Z. J., Chen Y., Ye J., Wang S. S., Liu Z., Angew. Chem. Int. Ed., 2015, 54(35), 10211—10215 |
35 | Song J., He K. Y., Xing B. C., Pei Y., Wang D. N., Wang Y., Li S. Y., Li J., Huan W. W., Zhang Y. M., Hammock B. D., Anal. Chem., 2022, 94(50), 17567—17576 |
36 | Cao B. Q., Pan Y., Zhao J. J., Huang Q. B., Modern Scientific Instruments, 2006, 16(6), 29—33 |
曹丙庆, 潘勇, 赵建军, 黄启斌. 现代科学仪器, 2006, 16(6), 29—33 | |
37 | Zhang X. G., Zhu Q. J., Wang Y. B., Sun T., Chem. Res. Appl., 2016, 28(9), 1250—1259 |
张孝刚, 朱秋劲, 王一波, 孙涛. 化学研究与应用, 2016, 28(9), 1250—1259 | |
38 | Yao X., Zhang S. F., Qian L. W., Du M., Carbohydr. Polym., 2021, 265, 118082 |
[1] | HUANG Rongting, ZHU Guiying, LI Xinyu, TANG Daoyuan, ZHANG Yong, WANG Bin, ZHU Jintuo, HE Xinjian, XU Huan. Morphological Manipulation of Highly Electroactive Poly(lactic acid) Nanofibrous Membranes for Efficient Removal of Airborne PM0.3 [J]. Chem. J. Chinese Universities, 2024, 45(1): 154. |
[2] | LIU Jinlu, GUO Jiayu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Construction and Adsorption Properties of an Amide-based Cu-MOF [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220746. |
[3] | HAN Xu, BAI Xue, ZHANG Zhong, YANG Yanli, CUI Hong, LIU Shuxia. Synthesis and Deep Desulfurization Activity of Fuel Oil of PW11M@Cu3(BTC)2 Hybrid [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220702. |
[4] | CHEN Shaochen, CHENG Min, WANG Shihui, WU Jinkui, LUO Lei, XUE Xiaoyu, JI Xu, ZHANG Changchun, ZHOU Li. Transfer Learning Modeling for Predicting the Methane and Hydrogen Delivery Capacity of Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220459. |
[5] | ZOU Yingying, ZHANG Chaoqi, YUAN Ling, LIU Chao, YU Chengzhong. Recent Advances in Metal-organic Framework Derived Hollow Superstructures: Synthesis and Applications [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220613. |
[6] | YANG Qingfeng, LYU Liang, LAI Xiaoyong. Progress on Preparation and Electrocatalytic Application of Hollow MOFs [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220666. |
[7] | LU Yu, WANG Tie. Research Progress of Hollow Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220662. |
[8] | WENG Meiqi, SHANG Guiming, WANG Jiatai, LI Shenghua, FAN Zhi, LIN Song, GUO Minjie. Template Simulation of Organophosphorus Nerve Agent Molecularly Imprinted Polymers [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220136. |
[9] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[10] | LU Cong, LI Zhenhua, LIU Jinlu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Synthesis, Structure and Fluorescence Detection Properties of a New Lanthanide Metal-Organic Framework Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220037. |
[11] | TIAN Xueqin, MO Zheng, DING Xin, WU Pengyan, WANG Yu, WANG Jian. A Squaramide-containing Luminescent Metal-organic Framework as a High Selective Sensor for Histidine [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210589. |
[12] | DONG Mingjie, WANG Xuan, DONG Haifeng, ZHANG Xueji. Applications of Metal-organic Frameworks in Cancer Theranostics [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220575. |
[13] | XING Peiqi, LU Tong, LI Guanghua, WANG Liyan. Controllable Syntheses of Two Cd(II) Metal-organic Frameworks Possessing Related Structures [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220218. |
[14] | SHI Xiaofan, ZHU Jian, BAI Tianyu, FU Zixuan, ZHANG Jijie, BU Xianhe. Research Status and Progress of MOFs with Application in Photoelectrochemical Water-splitting [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210613. |
[15] | WU Ji, ZHANG Hao, LUO Yuhui, GENG Wuyue, LAN Yaqian. A Microporous Cationic Ga(III)-MOF with Fluorescence Properties for Selective sensing Fe3+ Ion and Nitroaromatic Compounds [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210617. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||