Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (4): 20220702.doi: 10.7503/cjcu20220702
• Articles: Inorganic Chemistry • Previous Articles Next Articles
HAN Xu, BAI Xue, ZHANG Zhong, YANG Yanli, CUI Hong, LIU Shuxia()
Received:
2022-11-05
Online:
2023-04-10
Published:
2022-12-29
Contact:
LIU Shuxia
E-mail:liusx@nenu.edu.cn
Supported by:
CLC Number:
TrendMD:
HAN Xu, BAI Xue, ZHANG Zhong, YANG Yanli, CUI Hong, LIU Shuxia. Synthesis and Deep Desulfurization Activity of Fuel Oil of PW11M@Cu3(BTC)2 Hybrid[J]. Chem. J. Chinese Universities, 2023, 44(4): 20220702.
Compd. | NENU⁃31 | NENU⁃32 | NENU⁃33 | NENU⁃34 | NENU⁃36 | NENU⁃37 |
---|---|---|---|---|---|---|
CCDC | 2207152 | 2207153 | 2207154 | 2207155 | 2207156 | 2207157 |
Empirical formula | C76H123NCu12 | C76H140NCu12 | C76H133NCu12 | C76H136NCu12 | C76H116NCu13 | C76H124NCu12 |
PW11CrO129 | PW11MnO137 | PW11FeO134 | PW11CoO135 | PW11O126 | PW11ZnO130 | |
Formula weight | 5985.8 | 6133.8 | 6079.6 | 6071.1 | 5942.8 | 6016.2 |
Temperature/K | 298 | 298 | 298 | 298 | 298 | 298 |
λ/nm | 0.071073 | 0.071073 | 0.071073 | 0.071073 | 0.071073 | 0.071073 |
Crystal system | Cubic | Cubic | Cubic | Cubic | Cubic | Cubic |
Space group | Fm | Fm | Fm | Fm | Fm | Fm |
a/nm | 2.63388(11) | 2.63188(10) | 2.62981(11) | 2.63209(9) | 2.63180(6) | 2.63459(9) |
Volume/nm3 | 18.272(2) | 18.230(2) | 18.188(2) | 18.235(19) | 18.228(12) | 18.286(19) |
Z, calculated density | 4, 2.061 | 4, 2.065 | 4, 2.070 | 4, 1.981 | 4, 1.972 | 4, 2.072 |
F(000) | 10480.0 | 10460.0 | 10464.0 | 10012.0 | 9948.0 | 10542.0 |
θ range/(°) | 3.39—25.04 | 3.37—25.01 | 2.19—25.03 | 2.57—25.05 | 2.57—25.06 | 2.57—25.03 |
Rint | 0.0820 | 0.0614 | 0.0614 | 0.0670 | 0.0583 | 0.0621 |
GOF on F2 | 1.022 | 1.170 | 1.161 | 1.114 | 1.051 | 1.096 |
R[I>2σ(I)] | R1=0.0300, wR2=0.0639 | R1=0.0354, wR2=0.0794 | R1=0.0282, wR2=0.0693 | R1=0.0328, wR2=0.0727 | R1=0.0259, wR2=0.0623 | R1=0.0271, wR2=0.0622 |
R(all data) | R1=0.0425, wR2=0.0689 | R1=0.0449, wR2=0.0838 | R1=0.0418, wR2=0.0802 | R1=0.0427, wR2=0.0782 | R1=0.0343, wR2=0.0676 | R1=0.0375, wR2=0.0678 |
Table 1 Crystallographic data and structure refinements parameters*
Compd. | NENU⁃31 | NENU⁃32 | NENU⁃33 | NENU⁃34 | NENU⁃36 | NENU⁃37 |
---|---|---|---|---|---|---|
CCDC | 2207152 | 2207153 | 2207154 | 2207155 | 2207156 | 2207157 |
Empirical formula | C76H123NCu12 | C76H140NCu12 | C76H133NCu12 | C76H136NCu12 | C76H116NCu13 | C76H124NCu12 |
PW11CrO129 | PW11MnO137 | PW11FeO134 | PW11CoO135 | PW11O126 | PW11ZnO130 | |
Formula weight | 5985.8 | 6133.8 | 6079.6 | 6071.1 | 5942.8 | 6016.2 |
Temperature/K | 298 | 298 | 298 | 298 | 298 | 298 |
λ/nm | 0.071073 | 0.071073 | 0.071073 | 0.071073 | 0.071073 | 0.071073 |
Crystal system | Cubic | Cubic | Cubic | Cubic | Cubic | Cubic |
Space group | Fm | Fm | Fm | Fm | Fm | Fm |
a/nm | 2.63388(11) | 2.63188(10) | 2.62981(11) | 2.63209(9) | 2.63180(6) | 2.63459(9) |
Volume/nm3 | 18.272(2) | 18.230(2) | 18.188(2) | 18.235(19) | 18.228(12) | 18.286(19) |
Z, calculated density | 4, 2.061 | 4, 2.065 | 4, 2.070 | 4, 1.981 | 4, 1.972 | 4, 2.072 |
F(000) | 10480.0 | 10460.0 | 10464.0 | 10012.0 | 9948.0 | 10542.0 |
θ range/(°) | 3.39—25.04 | 3.37—25.01 | 2.19—25.03 | 2.57—25.05 | 2.57—25.06 | 2.57—25.03 |
Rint | 0.0820 | 0.0614 | 0.0614 | 0.0670 | 0.0583 | 0.0621 |
GOF on F2 | 1.022 | 1.170 | 1.161 | 1.114 | 1.051 | 1.096 |
R[I>2σ(I)] | R1=0.0300, wR2=0.0639 | R1=0.0354, wR2=0.0794 | R1=0.0282, wR2=0.0693 | R1=0.0328, wR2=0.0727 | R1=0.0259, wR2=0.0623 | R1=0.0271, wR2=0.0622 |
R(all data) | R1=0.0425, wR2=0.0689 | R1=0.0449, wR2=0.0838 | R1=0.0418, wR2=0.0802 | R1=0.0427, wR2=0.0782 | R1=0.0343, wR2=0.0676 | R1=0.0375, wR2=0.0678 |
Sample | Volume adsorbed/(cm3·g‒1) | SBET/(m2·g‒1) | Sample | Volume adsorbed/(cm3·g‒1) | SBET/(m2·g‒1) |
---|---|---|---|---|---|
Cu3(BTC)2 | 250 | 954.0 | NENU⁃34 | 124 | 468.0 |
NENU⁃30 | 122 | 460.7 | NENU⁃35 | 123 | 464.0 |
NENU⁃31 | 123 | 464.0 | NENU⁃36 | 126 | 475.8 |
NENU⁃32 | 127 | 479.5 | NENU⁃37 | 127 | 479.5 |
NENU⁃33 | 125 | 472.0 |
Table 2 N2 adsorption test results of Cu3(BTC)2 and NENU⁃n(30—37)
Sample | Volume adsorbed/(cm3·g‒1) | SBET/(m2·g‒1) | Sample | Volume adsorbed/(cm3·g‒1) | SBET/(m2·g‒1) |
---|---|---|---|---|---|
Cu3(BTC)2 | 250 | 954.0 | NENU⁃34 | 124 | 468.0 |
NENU⁃30 | 122 | 460.7 | NENU⁃35 | 123 | 464.0 |
NENU⁃31 | 123 | 464.0 | NENU⁃36 | 126 | 475.8 |
NENU⁃32 | 127 | 479.5 | NENU⁃37 | 127 | 479.5 |
NENU⁃33 | 125 | 472.0 |
Entry | Abb. | Code number | Conv.(%) | Entry | Abb. | Code number | Conv.(%) |
---|---|---|---|---|---|---|---|
1 | PW11Mn | — | 30.3 | 6 | PW11Fe@Cu3(BTC)2 | NENU⁃33 | 96.4 |
2 | PW12@Cu3(BTC)2 | NENU⁃3 | 92.0 | 7 | PW11Co@Cu3(BTC)2 | NENU⁃34 | 93.2 |
3 | PW11Ti@Cu3(BTC)2 | NENU⁃30 | 98.5 | 8 | PW11Ni@Cu3(BTC)2 | NENU⁃35 | 98.2 |
4 | PW11Cr@Cu3(BTC)2 | NENU⁃31 | 96.9 | 9 | PW11Cu@Cu3(BTC)2 | NENU⁃36 | 95.3 |
5 | PW11Mn@Cu3(BTC)2 | NENU⁃32 | 99.0 | 10 | PW11Zn@Cu3(BTC)2 | NENU⁃37 | 94.7 |
Table 3 Oxidative desulfurization with different catalysts*
Entry | Abb. | Code number | Conv.(%) | Entry | Abb. | Code number | Conv.(%) |
---|---|---|---|---|---|---|---|
1 | PW11Mn | — | 30.3 | 6 | PW11Fe@Cu3(BTC)2 | NENU⁃33 | 96.4 |
2 | PW12@Cu3(BTC)2 | NENU⁃3 | 92.0 | 7 | PW11Co@Cu3(BTC)2 | NENU⁃34 | 93.2 |
3 | PW11Ti@Cu3(BTC)2 | NENU⁃30 | 98.5 | 8 | PW11Ni@Cu3(BTC)2 | NENU⁃35 | 98.2 |
4 | PW11Cr@Cu3(BTC)2 | NENU⁃31 | 96.9 | 9 | PW11Cu@Cu3(BTC)2 | NENU⁃36 | 95.3 |
5 | PW11Mn@Cu3(BTC)2 | NENU⁃32 | 99.0 | 10 | PW11Zn@Cu3(BTC)2 | NENU⁃37 | 94.7 |
1 | Zhang Z., Liu Y. W., Tian H. R., Li X. H., Liu S. M., Lu Y., Sun Z. X., Liu T. B., Liu S. X., Matter, 2020, 2(1), 250—260 |
2 | Liang D. D., Liu S. X., Ma F. J., Wei F., Chen Y. G., Adv. Synth. Catal., 2011, 353(5), 733—742 |
3 | Ma F. J., Liu S. X., Ren G. J., Liang D. D., Sha S., Inorg. Chem. Commun., 2012, 22, 174—177 |
4 | Li X. H., Liu Y. W., Lu Y., Zhang Z., Tian H. R., Liu S. M., Liu S. X., Chem. Commun.(Camb), 2020, 56(11), 1641—1644 |
5 | Li N., Liu J., Dong B. X., Lan Y. Q., Angew. Chem. Int. Ed. Engl., 2020, 59(47), 20779—20793 |
6 | Yang L., Zhang Z., Zhang C. N., Li S., Liu G. C., Wang X. L., Inorg. Chem. Front., 2022, 9(18), 4824—4833 |
7 | Sun C. Y., Liu S. X., Liang D. D., Shao K. Z., Ren Y. H., Su Z. M., J. Am. Chem. Soc., 2009, 131, 1883—1888 |
8 | Liu Y. W., Liu S. M., He D. F., Li N., Ji Y. J., Zheng Z. P., Luo F., Liu S. X., Shi Z., Hu C. W., J. Am. Chem. Soc., 2015, 137(39), 12697—12703 |
9 | Zhong X. H., Lu Y., Luo F., Liu Y. W., Li X. H., Liu S. X., Chem. Eur. J., 2018, 24(12), 3045—3051 |
10 | Zhang Z., Tao Y. W., Tian H. R., Yue Q., Liu S. M., Liu Y. W., Li X. H., Lu Y., Sun Z. X., Kraka E., Liu S. X., Chem. Mater., 2020, 32(13), 5550—5557 |
11 | Zhang Z., Liu Y. W., Tian H. R., Ma X. J., Yue Q., Sun Z. X., Lu Y., Liu S. X., ACS Nano, 2021, 15(10), 16581—16588 |
12 | Ma F. J., Liu S. X., Sun C. Y., Liang D. D., Ren G. J., Wei F., Chen Y. G., Su Z. M., J. Am. Chem. Soc., 2011, 133(12), 4178—4181 |
13 | Liu Y. W., Liu S. M., Liu S. X., Liang D. D., Li S. J., Tang Q., Wang X. Q., Miao J., Shi Z., Zheng Z. P., ChemCatChem, 2013, 5(10), 3086—3091 |
14 | Li X. H., Liu Y. W., Liu S. M., Wang S., Xu L., Zhang Z., Luo F., Lu Y., Liu S. X., J. Mater. Chem. A, 2018, 6(11), 4678—4685 |
15 | Wang J., Huo H. Y., Wang Y., Zhang Z., Liu S. X., Chem. J. Chinese Universities, 2022, 43(1), 20210557 |
王婕, 霍海燕, 王洋, 张仲, 刘术侠. 高等学校化学学报, 2022, 43(1), 20210557 | |
16 | Wang Y., Sun C. Y., Wang R. W., Zhang Z. D., Zhang D. M., Zhang Z. T., Qiu S. L., Chem. J. Chinese Universities, 2019, 40(6), 1265—1270 |
王影, 孙传胤, 王润伟, 张震东, 张大明, 张宗弢, 裘式纶. 高等学校化学学报, 2019, 40(6), 1265—1270 | |
17 | Ahmadian M., Anbia M., Energy & Fuels, 2021, 35(13), 10347—10373 |
18 | Abazari R., Esrafili L., Morsali A., Wu Y., Gao J., Appl. Catal. B: Environ., 2021, 283, 119582 |
19 | Zhang R. L., Wang Y., Yu Z. Q., Sun Z. C., Wang A. J., Liu Y. Y., Chem. J. Chinese Universities, 2021, 42(6), 1914—1923 |
张仁丽, 王瑶, 遇治权, 孙志超, 王安杰, 刘颖雅. 高等学校化学学报, 2021, 42(6), 1914—1923 | |
20 | Nisar A., Zhuang J., Wang X., Adv. Mater., 2011, 23(9), 1130—1135 |
21 | Jiang C. Y., Wang J. J., Wang S. T., Guan H. Y., Wang X. H., Huo M. X., Appl. Catal. B: Environ., 2011, 106(3/4), 343—349 |
22 | Li Y., Zhang Y., Wu P., Feng C., Xue G., Catalysts, 2018, 8(12), 639 |
23 | Deltcheff C. R., Fournier M., Franck R., Thouvenot R., Inorg. Chem., 1983, 22, 207—216 |
24 | Liu Y. Y., Hu C. W., Wang Z. P., Zhang J. Y., Wang E. B., Sci. China: Ser. B, 1996, 39(1), 86—94 |
25 | Tourne C. M., Tourne G. F., Malik S. A., Weakley T. J. R., J. Inorg. Nucl. Chem., 1970, 32, 3875—3890 |
26 | Zonnevijlle F., Tourne C. M., Tourne G. F., Inorg. Chem., 1982, 21(7), 2751—2757 |
27 | Song F. Y., Ding Y., Ma B. C., Wang C. M., Wang Q., Du X. Q., Fu S., Song J., Energy Environ. Sci., 2013, 6(4), 1170 |
28 | Weakley T. J. R., Malik S. A., J. Inorg. Nucl. Chem., 1967, 29, 2935—5944 |
29 | Song J., Luo Z., Britt D. K., Furukawa H., Yaghi O. M., Hardcastle K. I., Hill C. L., J. Am. Chem. Soc., 2011, 133(42), 16839—16846 |
30 | Liu H., Gong L. G., Wang C. X., Wang C. M., Yu K., Zhou B. B., J. Mater. Chem. A, 2021, 9(22), 13161—13169 |
31 | Chui S. S. Y., Lo S. M. F., Charmant J. P. H., Orpen A. G., Williams I. D., Science, 1999, 283(5405), 1148—1150 |
[1] | CHEN Shaochen, CHENG Min, WANG Shihui, WU Jinkui, LUO Lei, XUE Xiaoyu, JI Xu, ZHANG Changchun, ZHOU Li. Transfer Learning Modeling for Predicting the Methane and Hydrogen Delivery Capacity of Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220459. |
[2] | LU Yu, WANG Tie. Research Progress of Hollow Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220662. |
[3] | ZOU Yingying, ZHANG Chaoqi, YUAN Ling, LIU Chao, YU Chengzhong. Recent Advances in Metal-organic Framework Derived Hollow Superstructures: Synthesis and Applications [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220613. |
[4] | YANG Qingfeng, LYU Liang, LAI Xiaoyong. Progress on Preparation and Electrocatalytic Application of Hollow MOFs [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220666. |
[5] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[6] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[7] | ZHANG Yichao, ZHAO Fulai, WANG Yu, WANG Yaling, SHEN Yongtao, FENG Yiyu, FENG Wei. Experimental Optimization and Theoretical Simulation of High Performance Field-effect Transistors Based on Multilayer Tungsten Diselenide [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220113. |
[8] | LU Cong, LI Zhenhua, LIU Jinlu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Synthesis, Structure and Fluorescence Detection Properties of a New Lanthanide Metal-Organic Framework Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220037. |
[9] | HU Huimin, CUI Jing, LIU Dandan, SONG Jiaxin, ZHANG Ning, FAN Xiaoqiang, ZHAO Zhen, KONG Lian, XIAO Xia, XIE Zean. Influence of Different Transition Metal Decoration on the Propane Dehydrogenation Performance over Pt/M-DMSN Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210815. |
[10] | TIAN Xueqin, MO Zheng, DING Xin, WU Pengyan, WANG Yu, WANG Jian. A Squaramide-containing Luminescent Metal-organic Framework as a High Selective Sensor for Histidine [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210589. |
[11] | DONG Mingjie, WANG Xuan, DONG Haifeng, ZHANG Xueji. Applications of Metal-organic Frameworks in Cancer Theranostics [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220575. |
[12] | ZHU Haotian, JIN Meixiu, TANG Wensi, SU Fang, LI Yangguang. Properties of Transition Metal-biimidazole-Dawson-type Tungstophosphate Hybrid Compounds as Supports for Enzyme Immobilization [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220328. |
[13] | LIU Kun, YIN Yuan, GENG Wenqiang, XIA Haotian, LI Hua. Influence Mechanism of Filling Transition Metal Oxide Catalyst with Different Components on Nitrogen Fixation in Dielectric Barrier Discharge [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220278. |
[14] | DING Qin, ZHANG Zixuan, XU Peicheng, LI Xiaoyu, DUAN Limei, WANG Yin, LIU Jinghai. Effects of Cu, Ni and Co Hetroatoms on Constructions and Electrocatalytic Properties of Fe-based Carbon Nanotubes [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220421. |
[15] | WANG Zumin, MENG Cheng, YU Ranbo. Doping Regulation in Transition Metal Phosphides for Hydrogen Evolution Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||