Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (1): 20220613.doi: 10.7503/cjcu20220613
• Review • Previous Articles Next Articles
ZOU Yingying1, ZHANG Chaoqi1, YUAN Ling1, LIU Chao1(), YU Chengzhong1,2(
)
Received:
2022-09-14
Online:
2023-01-10
Published:
2022-11-01
Contact:
LIU Chao, YU Chengzhong
E-mail:cliu@chem.ecnu.edu.cn;czyu@chem.ecnu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZOU Yingying, ZHANG Chaoqi, YUAN Ling, LIU Chao, YU Chengzhong. Recent Advances in Metal-organic Framework Derived Hollow Superstructures: Synthesis and Applications[J]. Chem. J. Chinese Universities, 2023, 44(1): 20220613.
Fig.1 Schematic illustration of the fabrication process of Co atom embedded carbon micro⁃urchins(A)[58], illustration of the formation process of spherical HSSs of carbon nanorods(B)[49], schematic representation of the synthesis of frame⁃like Co⁃Fe oxide(C)[87](A) Copyright 2019, Elsevier; (B) Copyright 2019, Wiley-VCH; (C) Copyright 2017, American Association for the Advancement of Science.
Fig.2 Illustration of the fabrication of FeCoNi decorated carbon HSSs(A)[81], a scheme of the construction of HSSs composed of Co/Cu mixed oxide nanorods(B)[90], a scheme of the formation process of hollow Co, N⁃doped carbon nanotube arrays(C)[75](A) Copyright 2021, American Chemical Society; (B) Copyright 2019, Wiley-VCH; (C) Copyright 2019, Elsevier.
Fig.3 Schematic illustration of the synthetic process of NiCo2O4 hollow nanowall arrays(A)[79], illustration of the fabrication process of 1D carbon HSSs(B)[78](A) Copyright 2017, Wiley-VCH; (B) Copyright 2017, Wiley-VCH.
Fig.5 Synthetic route of hierarchical Co9S8@ZnIn2S4 composite HSSs(A)[94], illustration of the synthetic process of HSSs comprised of Ni⁃Co sulfide nanosheets(B)[97](A) Copyright 2018, American Chemical Society; (B) Copyright 2017, Wiley-VCH.
Fig.6 Schematic illustration of the synthesis of single and double shelled Ni⁃Fe LDH HSSs(A)[69], SEM images of ZIF⁃67 and derived HSSs of hierarchical CNTs frameworks(B)[52](A) Copyright 2020, Wiley-VCH; (B) Copyright 2016, Springer Nature.
Architectural type | Composition | Application | Ref. |
---|---|---|---|
Type I | Fe2O3 | LIBs | [ |
NiCo⁃LDH/Co9S8 | HER/supercapacitors | [ | |
NiCoP/C | OER | [ | |
Co3O4/NiCo2O4 | OER/pseudo⁃capacitors | [ | |
Ni⁃Fe LDH | OER | [ | |
Ni⁃Co⁃MoS2 | HER | [ | |
ZnCo⁃OH | Photocatalytic CO2 RR | [ | |
CoS⁃NP/CoS⁃NS | Supercapacitors | [ | |
FeCoS2⁃CoS2 | Photocatalytic CO2 RR | [ | |
Ni3S4@Co9S8 | Supercapacitors | [ | |
ZnS NR@HCP | LIBs | [ | |
CoO/Co⁃Cu⁃S⁃2 | Supercapacitors | [ | |
FeCoNi/HCS | ORR/OER | [ | |
Co⁃Fe alloy/N⁃C | ORR | [ | |
ZnO/ZnFe2O4/C | LIBs | [ | |
Pd@SS⁃CNR | Heterogeneous catalysis | [ | |
Co⁃Fe oxides | OER | [ | |
Cu(NiCo)2S4/Ni3S4 | Supercapacitors | [ | |
Cu doped Co3O4 | Heterogeneous catalysis | [ | |
Type II | Co3S4@MoS2 | HER/OER | [ |
Co9S8@ZnIn2S4 | Photocatalytic HER | [ | |
Co/NGC@ZnIn2S4 | Photocatalytic HER | [ | |
In2S3⁃CdIn2S4 | Photocatalytic CO2 RR | [ | |
ZnIn2S4⁃In2O3 | Photocatalytic CO2 RR | [ | |
Type III | Co SAs/N⁃C | ORR/OER | [ |
Co1-x S@C | Pseudo⁃capacitors | [ | |
Type IV | NiCo2O4 | OER/supercapacitors | [ |
Mo⁃CoP//Mo⁃CoOOH | Water splitting | [ | |
Fe⁃Co⁃S/NF | Supercapacitors | [ | |
Ni2P/(NiFe)2P(O) NAs | OER | [ | |
MoS2/CoS2 | HER | [ | |
NCPFs | Supercapacitors | [ | |
Architectural type | Composition | Application | Ref. |
Type IV | HPCNFs⁃N | Supercapacitors | [ |
HCA⁃Co | OER/ORR/batteries | [ | |
Type V | Co3O4/ZnFe2O4 | Supercapacitors | [ |
NCNTFs | ORR/OER | [ | |
N⁃CNTs | ORR/LIBs | [ | |
CoP@HPCN | Lithium⁃sulfur batteries | [ | |
CoP@N⁃HP/CT | SIBs | [ | |
Ti⁃CoSx | OER | [ | |
Ti⁃ZnCoS | ORR | [ | |
CoS2 | LIBs | [ | |
Co3O4 | LIBs | [ |
Table 1 Architectural types, composition and performance of MOF derived HSSs
Architectural type | Composition | Application | Ref. |
---|---|---|---|
Type I | Fe2O3 | LIBs | [ |
NiCo⁃LDH/Co9S8 | HER/supercapacitors | [ | |
NiCoP/C | OER | [ | |
Co3O4/NiCo2O4 | OER/pseudo⁃capacitors | [ | |
Ni⁃Fe LDH | OER | [ | |
Ni⁃Co⁃MoS2 | HER | [ | |
ZnCo⁃OH | Photocatalytic CO2 RR | [ | |
CoS⁃NP/CoS⁃NS | Supercapacitors | [ | |
FeCoS2⁃CoS2 | Photocatalytic CO2 RR | [ | |
Ni3S4@Co9S8 | Supercapacitors | [ | |
ZnS NR@HCP | LIBs | [ | |
CoO/Co⁃Cu⁃S⁃2 | Supercapacitors | [ | |
FeCoNi/HCS | ORR/OER | [ | |
Co⁃Fe alloy/N⁃C | ORR | [ | |
ZnO/ZnFe2O4/C | LIBs | [ | |
Pd@SS⁃CNR | Heterogeneous catalysis | [ | |
Co⁃Fe oxides | OER | [ | |
Cu(NiCo)2S4/Ni3S4 | Supercapacitors | [ | |
Cu doped Co3O4 | Heterogeneous catalysis | [ | |
Type II | Co3S4@MoS2 | HER/OER | [ |
Co9S8@ZnIn2S4 | Photocatalytic HER | [ | |
Co/NGC@ZnIn2S4 | Photocatalytic HER | [ | |
In2S3⁃CdIn2S4 | Photocatalytic CO2 RR | [ | |
ZnIn2S4⁃In2O3 | Photocatalytic CO2 RR | [ | |
Type III | Co SAs/N⁃C | ORR/OER | [ |
Co1-x S@C | Pseudo⁃capacitors | [ | |
Type IV | NiCo2O4 | OER/supercapacitors | [ |
Mo⁃CoP//Mo⁃CoOOH | Water splitting | [ | |
Fe⁃Co⁃S/NF | Supercapacitors | [ | |
Ni2P/(NiFe)2P(O) NAs | OER | [ | |
MoS2/CoS2 | HER | [ | |
NCPFs | Supercapacitors | [ | |
Architectural type | Composition | Application | Ref. |
Type IV | HPCNFs⁃N | Supercapacitors | [ |
HCA⁃Co | OER/ORR/batteries | [ | |
Type V | Co3O4/ZnFe2O4 | Supercapacitors | [ |
NCNTFs | ORR/OER | [ | |
N⁃CNTs | ORR/LIBs | [ | |
CoP@HPCN | Lithium⁃sulfur batteries | [ | |
CoP@N⁃HP/CT | SIBs | [ | |
Ti⁃CoSx | OER | [ | |
Ti⁃ZnCoS | ORR | [ | |
CoS2 | LIBs | [ | |
Co3O4 | LIBs | [ |
Fig.8 SEM(A) and TEM(B) images of CoO/Co⁃Cu⁃S⁃2 HTHSs, specific capacitances and cycling stability of various samples(C), specific capacities and coulombic efficiencies of CoO/Co⁃Cu⁃S⁃2 HTHSs//AC hybrid supercapacitor(D)[90]
Fig.9 Schematic illustration for the synthesis process(A), charge/discharge profiles(B), rate capability(C) and cycling performance of CNT/Co3O4 HSSs(D)[84]
Fig.10 Scheme of the function of CoP@N⁃HP/CT during sodium storage process(A), rate performance of different samples at various current densities(B), long⁃term cycling performance of CoP@N⁃HP/CT anodes(C)[124]
Fig.11 Schematic illustrations of preparation route of N⁃CNTs HSSs(A), LSV profiles of different catalysts(B), K⁃L plots(C) and chronoamperometric responses N⁃CNTs⁃650(D)[53]
Fig.13 CO2 photoreduction activities of different samples(A), cycle performance of In2S3⁃CdIn2S4⁃10(B)[96], photocatalytic H2 evolution activities of different samples(C), H2 evolution rate of Co9S8@ZnIn2S4 in stability tests(D)[94]
Fig.14 Schematic representation for the design of C⁃CoM⁃HNCs(A), c/c0vs. time of RhB degradation over C⁃Co⁃HNC(B), catalytic dynamics of C⁃Cu⁃HNC with different PMS concentrations(C)[135]
Fig.15 TEM(A) and HAADF⁃STEM images of Pd@SS⁃CNR(B), catalytic activities of Pd loaded carbon materials for FA dehydrogenation(C), temperature⁃dependent gas evolution over Pd@SS⁃CNR(D)[49]
33 | Wang J., Yuan L., Zhang C., Li S., Wang G., Wan J., Liu C., Yu C., Adv. Funct. Mater., 2021, 31(51), 2107260 |
34 | Zhang N., Yan L., Lu Y., Fan Y., Guo S., Adimi S., Liu D., Ruan S., Chin. Chem. Lett., 2020, 31(8), 2071—2076 |
35 | Fu S., Zhu C., Song J., Du D., Lin Y., Adv. Energy Mater., 2017, 7(19), 1700363 |
36 | Liang Z., Zhao R., Qiu T., Zou R., Xu Q., Energy Chem., 2019, 1(1), 100001 |
37 | Dong Y., Li S., Hong S., Wang L., Wang B., Chin. Chem. Lett., 2020, 31(3), 635—642 |
38 | Wang Q., Astruc D., Chem. Rev., 2020, 120(2), 1438—1511 |
39 | Dang S., Zhu Q. L., Xu Q., Nat. Rev. Mater., 2018, 3(1), 17075 |
40 | Xia W., Mahmood A., Zou R., Xu Q., Energy Environ. Sci., 2015, 8(7), 1837—1866 |
41 | Chen Y. Z., Zhang R., Jiao L., Jiang H. L., Coord. Chem. Rev., 2018, 362, 1—23 |
42 | Cao X., Tan C., Sindoro M., Zhang H., Chem. Soc. Rev., 2017, 46(10), 2660—2677 |
43 | Yap M. H., Fow K. L., Chen G. Z., Green Energy Environ., 2017, 2(3), 218—245 |
44 | Luo H., Zeng Z., Zeng G., Zhang C., Xiao R., Huang D., Lai C., Cheng M., Wang W., Xiong W., Yang Y., Qin L., Zhou C., Wang H., Zhou Y., Tian S., Chem. Eng. J., 2020, 383, 123196 |
45 | Kim H., Lah M. S., Dalton Trans., 2017, 46(19), 6146—6158 |
46 | Xue Z., Wang P., Peng A., Wang T., Adv. Mater., 2019, 31(38), 1801441 |
47 | Hou C. C., Zou L., Xu Q., Adv. Mater., 2019, 31(46), e1904689 |
48 | Chen Z., Wu R., Wang H., Jiang Y., Jin L., Guo Y., Song Y., Fang F., Sun D., Chem. Eng. J., 2017, 326, 680—690 |
49 | Zou L., Kitta M., Hong J., Suenaga K., Tsumori N., Liu Z., Xu Q., Adv. Mater., 2019, 31(24), e1900440 |
50 | Hu H., Guan B., Xia B., Lou X. W., J. Am. Chem. Soc., 2015, 137(16), 5590—5595 |
51 | Wang F., Fang R., Zhao X., Kong X. P., Hou T., Shen K., Li Y., ACS Nano, 2022, 16(3), 4517—4527 |
52 | Xia B. Y., Yan Y., Li N., Wu H. B., Lou X. W., Wang X., Nat. Energy, 2016, 1(1), 15006 |
53 | Meng J., Niu C., Xu L., Li J., Liu X., Wang X., Wu Y., Xu X., Chen W., Li Q., Zhu Z., Zhao D., Mai L., J. Am. Chem. Soc., 2017, 139(24), 8212—8221 |
54 | He P., Yu X. Y., Lou X. W., Angew. Chem. Int. Ed., 2017, 56(14), 3897—3900 |
55 | Pi Y., Jin S., Li X., Tu S., Li Z., Xiao J., Appl. Catal. B: Environ., 2019, 256, 117882 |
56 | Wang X., Cheng B., Zhang L., Yu J., Li Y., J. Colloid Interface Sci., 2022, 612, 598—607 |
57 | Le K., Gao M., Liu W., Liu J., Wang Z., Wang F., Murugadoss V., Wu S., Ding T., Guo Z., Electrochim. Acta, 2019, 323,134826 |
58 | Sun X., Sun S., Gu S., Liang Z., Zhang J., Yang Y., Deng Z., Wei P., Peng J., Xu Y., Fang C., Li Q., Han J., Jiang Z., Huang Y., Nano Energy, 2019, 61, 245—250 |
59 | Yu X. Y., Feng Y., Jeon Y., Guan B., Lou X. W., Paik U., Adv. Mater., 2016, 28(40), 9006—9011 |
60 | Wang Y., Wang S., Zhang S., Lou X., Angew. Chem., 2020, 132, 12016—12020 |
61 | Ye Z., Jiang Y., Qian J., Li W., Feng T., Li L., Wu F., Chen R., Nano Energy, 2019, 64,103965 |
62 | Hu X. W., Liu S., Qu B. T., You X. Z., ACS Appl. Mater. Interfaces, 2015, 7(18), 9972—9981 |
63 | Zhao W., Yan G., Zheng Y., Liu B., Jia D., Liu T., Cui L., Zheng R., Wei D., Liu J., J. Colloid Interface Sci., 2020, 565, 295—304 |
64 | Xie X. C., Huang K. J., Wu X., J. Mater. Chem. A, 2018, 6(16), 6754—6771 |
65 | Cai Z. X., Wang Z. L., Kim J., Yamauchi Y., Adv. Mater., 2019, 31(11), 1804903 |
66 | Guan B. Y., Yu X. Y., Wu H. B., Lou X. W., Adv. Mater., 2017, 29(47), 1703614 |
67 | Zou F., Hu X., Li Z., Qie L., Hu C., Zeng R., Jiang Y., Huang Y., Adv. Mater., 2014, 26(38), 6622—6628 |
68 | Zhang S. L., Guan B. Y., Lou X. W., Small, 2019, 15(13), e1805324 |
69 | Zhang J., Yu L., Chen Y., Lu X. F., Gao S., Lou X. W., Adv. Mater., 2020, 32(16), e1906432 |
70 | Li H., Yue F., Xie H., Yang C., Zhang Y., Zhang L., Wang J., CrystEngComm, 2018, 20(7), 889—895 |
71 | Hu H., Guan B. Y., Lou X. W., Chem, 2016, 1(1), 102—113 |
72 | Guo Y., Tang J., Qian H., Wang Z., Yamauchi Y., Chem. Mat., 2017, 29(13), 5566—5573 |
73 | Wang S., Wang Y., Zhang S. L., Zang S. Q., Lou X. W., Adv. Mater., 2019, 31(41), e1903404 |
74 | Sun S., Sun X., Liu Y., Peng J., Qiu Y., Xu Y., Zhang J., Li Q., Fang C., Han J., Huang Y., J. Mater. Chem. A, 2019, 7(29), 17248—17253 |
75 | Zhu C., Ma Y., Zang W., Guan C., Liu X., Pennycook S. J., Wang J., Huang W., Chem. Eng. J., 2019, 369, 988—995 |
76 | Tang B., Yu Z. G., Zhang Y., Tang C., Seng H. L., Seh Z. W., Zhang Y. W., Pennycook S. J., Gong H., Yang W., J. Mater. Chem. A, 2019, 7(21), 13339—13346 |
77 | Wang C., Liu C., Li J., Sun X., Shen J., Han W., Wang L., Chem. Commun., 2017, 53(10), 1751—1754 |
78 | Chen L. F., Lu Y., Yu L., Lou X. W., Energy Environ. Sci., 2017, 10(8), 1777—1783 |
79 | Guan C., Liu X., Ren W., Li X., Cheng C., Wang J., Adv. Energy Mater., 2017, 7(12), 1602391 |
80 | Guan C., Xiao W., Wu H. J., Liu X. M., Zang W. J., Zhang H., Ding J., Feng Y. P., Pennycook S. J., Wang J., Nano Energy, 2018, 48, 73—80 |
81 | Wang H. F., Chen L., Wang M., Liu Z., Xu Q., Nano Lett., 2021, 21(8), 3640—3648 |
82 | Xi W., Yan G., Lang Z., Ma Y., Tan H., Zhu H., Wang Y., Li Y., Small, 2018, 14(42), 1802204 |
83 | Bao T., Xia Y., Lu J., Zhang C., Wang J., Yuan L., Zhang Y., Liu C., Yu C., Small, 2022, 18(4), e2103106 |
84 | Chen Y. M., Yu L., Lou X. W., Angew. Chem. Int. Ed., 2016, 55(20), 5990—5993 |
85 | Zhang C., Lu R., Liu C., Lu J., Zou Y., Yuan L., Wang J., Wang G., Zhao Y., Yu C., Adv. Sci., 2022, 9(12), e2104768 |
86 | Guo H., Li T., Chen W., Liu L., Yang X., Wang Y., Guo Y., Nanoscale, 2014, 6(24), 15168—15174 |
87 | Nai J., Guan B. Y., Yu L., Lou X. W., Sci. Adv., 2017, 3(8), e1700732 |
88 | Yu L., Yang J. F., Lou X. W., Angew. Chem. Int. Ed., 2016, 55(43), 13422—13426 |
89 | Zhang L., Wu H. B., Madhavi S., Hng H. H., Lou X. W., J. Am. Chem. Soc., 2012, 134(42), 17388—17391 |
90 | Lu W., Shen J. L., Zhang P., Zhong Y. J., Hu Y., Lou X. W., Angew. Chem. Int. Ed., 2019, 58(43), 15441—15447 |
91 | Song N., Ren S., Zhang Y., Wang C., Lu X., Adv. Funct. Mater., 2022, 32(34), 2204751 |
92 | Liu C., Wang J., Li J., Liu J., Wang C., Sun X., Shen J., Han W., Wang L., J. Mater. Chem. A, 2017, 5(3), 1211—1220 |
93 | Zhang C. L., Lu B. R., Cao F. H., Yu Z. L., Cong H. P., Yu S. H., J. Mater. Chem. A, 2018, 6(27), 12962—12968 |
94 | Wang S., Guan B. Y., Wang X., Lou X. W., J. Am. Chem. Soc., 2018, 140(45), 15145—15148 |
95 | Wang S., Guan B. Y., Lou X. W., J. Am. Chem. Soc., 2018, 140(15), 5037—5040 |
96 | Wang S., Guan B. Y., Lu Y., Lou X. W., J. Am. Chem. Soc., 2017, 139(48), 17305—17308 |
97 | Yilmaz G., Yam K. M., Zhang C., Fan H. J., Ho G. W., Adv. Mater., 2017, 29(26), 1606814 |
1 | Furukawa H., Cordova K. E., O'Keeffe M., Yaghi O. M., Science, 2013, 341(6149), 974 |
2 | Eddaoudi M., Moler D. B., Li H. L., Chen B. L., Reineke T. M., O'Keeffe M., Yaghi O. M., Acc. Chem. Res., 2001, 34(4), 319—330 |
3 | Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012, 112(2), 673—674 |
4 | Kitagawa S., Kitaura R., Noro S., Angew. Chem. Int. Ed., 2004, 43(18), 2334—2375 |
5 | Tranchemontagne D. J., Mendoza⁃Cortes J. L., O'Keeffe M., Yaghi O. M., Chem. Soc. Rev., 2009, 38(5), 1257—1283 |
6 | Cook T. R., Zheng Y. R., Stang P. J., Chem. Rev., 2013, 113(1), 734—777 |
7 | Rodenas T., Luz I., Prieto G., Seoane B., Miro H., Corma A., Kapteijn F., Llabres I., Xamena F. X., Gascon J., Nat. Mater., 2015, 14(1), 48—55 |
8 | Schneemann A., Bon V., Schwedler I., Senkovska I., Kaskel S., Fischer R. A., Chem. Soc. Rev., 2014, 43(16), 6062—6096. |
9 | Li H., Eddaoudi M., O'Keeffe M., Yaghi O. M., Nature, 1999, 402(6759), 276—279 |
10 | Liu C., Sun Q., Lin L., Wang J., Zhang C., Xia C., Bao T., Wan J., Huang R., Zou J., Yu C., Nat. Commun., 2020, 11(1), 4971 |
11 | Liu C., Wang J., Wan J., Yu C., Coord. Chem. Rev., 2021, 432,213743 |
12 | Bao T., Zou Y., Zhang C., Yu C., Liu C., Angew. Chem. Int. Ed., 2022,e202209433 |
13 | Li J. R., Kuppler R. J., Zhou H. C., Chem. Soc. Rev., 2009, 38(5), 1477—1504 |
14 | Li J. R., Sculley J., Zhou H. C., Chem. Rev., 2012, 112(2), 869—932 |
15 | Kreno L. E., Leong K., Farha O. K., Allendorf M., Van Duyne R. P., Hupp J. T., Chem. Rev., 2012, 112(2), 1105—1125 |
16 | Lee J., Farha O. K., Roberts J., Scheidt K. A., Nguyen S. T., Hupp J. T., Chem. Soc. Rev., 2009, 38(5), 1450—1459 |
17 | Horcajada P., Chalati T., Serre C., Gillet B., Sebrie C., Baati T., Eubank J. F., Heurtaux D., Clayette P., Kreuz C., Chang J. S., Hwang Y. K., Marsaud V., Bories P. N., Cynober L., Gil S., Ferey G., Couvreur P., Gref R., Nat. Mater., 2010, 9(2), 172—178 |
18 | Suh M. P., Park H. J., Prasad T. K., Lim D. W., Chem. Rev., 2012, 112(2), 782—835 |
19 | Corma A., Garcia H., Llabres i Xamena F. X., Chem. Rev., 2010, 110(8), 4606—4655 |
20 | Della Rocca J., Liu D., Lin W., Acc. Chem. Res., 2011, 44(10), 957—968 |
21 | Liu X., Yue T., Qi K., Qiu Y., Xia B. Y., Guo X., Chin. Chem. Lett., 2020, 31(9), 2189—2201 |
22 | Ren X. Y., Lu L. H., Chin. Chem. Lett., 2015, 26(12), 1439—1445 |
23 | Zhang Z., Cai Z., Wang Z., Peng Y., Xia L., Ma S., Yin Z., Huang Y., Nano⁃Micro Lett., 2021, 13(1), 56 |
98 | Dai M., Zhao D., Wu X., Chin. Chem. Lett., 2020, 31(9), 2177—2188 |
99 | Zou J., Zhang Y., Chen S., Shao H., Tang Y., Chem. J. Chinese Universities, 2021, 42(4), 1005—1016 |
100 | Simon P., Gogotsi Y., Nat. Mater., 2008, 7(11), 845—854 |
101 | Arico A. S., Bruce P., Scrosati B., Tarascon J. M., Van Schalkwijk W., Nat. Mater., 2005, 4(5), 366—377 |
102 | Chen M., Yang Y., Chen D., Wang H., Chin. Chem. Lett., 2018, 29(4), 564—570 |
103 | Liu L., Niu Z., Chen J., Chin. Chem. Lett., 2018, 29(4), 571—581 |
104 | Cheng W., Chen C., Yu Y., Li C., Gao L., Shi Z., Chem. J. Chinese Universities, 2017, 38(8), 1303—1308 |
105 | Liu C., Li F., Ma L. P., Cheng H. M., Adv. Mater., 2010, 22(8), E28—E62 |
106 | Wang G., Zhang L., Zhang J., Chem. Soc. Rev., 2012, 41(2), 797—828 |
107 | Frackowiak E., Beguin F., Carbon, 2001, 39(6), 937—950 |
108 | Yan J., Wang Q., Wei T., Fan Z., Adv. Energy Mater., 2014, 4(4), 1300816 |
109 | Chen M., Li H., Fan H., Li Y., Liu W., Xia X., Chen Q., Chem. J. Chinese Universities, 2021, 42(2), 539—555 |
110 | Kumar S., Saeed G., Zhu L., Hui K. N., Kim N. H., Lee J. H., Chem. Eng. J., 2021, 403, 126352 |
111 | Augustyn V., Simon P., Dunn B., Energy Environ. Sci., 2014, 7(5), 1597—1614 |
112 | Yuan H., Kong L., Li T., Zhang Q., Chin. Chem. Lett., 2017, 28(12), 2180—2194 |
24 | Ren Q., Wang H., Lu X. F., Tong Y. X., Li G. R., Adv. Sci., 2018, 5(3), 1700515 |
25 | Ren J., Huang Y., Zhu H., Zhang B., Zhu H., Shen S., Tan G., Wu F., He H., Lan S., Xia X., Liu Q., Carbon Energy, 2020, 2(2), 176—202 |
26 | Cheng N., Ren L., Xu X., Du Y., Dou S. X., Adv. Energy Mater., 2018, 8(25), 1801257 |
27 | Wang C., Kim J., Tang J., Kim M., Lim H., Malgras V., You J., Xu Q., Li J., Yamauchi Y., Chem, 2020, 6(1), 19—40 |
28 | Wang C., Kaneti Y. V., Bando Y., Lin J., Liu C., Li J., Yamauchi Y., Mater. Horizons, 2018, 5(3), 394—407 |
29 | Qin Y., Sun Y., Li Y., Li C., Wang L., Guo S., Chin. Chem. Lett., 2020, 31(3), 774—778 |
30 | Kaneti Y. V., Tang J., Salunkhe R. R., Jiang X., Yu A., Wu K. C. W., Yamauchi Y., Adv. Mater., 2017, 29(12), 1604898. |
31 | Li Y., Xu Y., Yang W., Shen W., Xue H., Pang H., Small, 2018, 14(25), 1704435 |
32 | Salunkhe R. R., Kaneti Y. V., Yamauchi Y., Acs Nano, 2017, 11(6), 5293—5308 |
113 | Geng C., Hua W., Ling G., Tao Y., Zhang C., Yang Q., Chem. J. Chinese Universities, 2021, 42(5), 1331—1339 |
114 | Meng X., Gao Q., Chem. J. Chinese Universities, 2014, 35(8), 1715—1719 |
115 | Li S., Wang C., Lu Z., Chem. J. Chinese Universities, 2021, 42(5), 1530—1542 |
116 | Li H., Zhu S., Li S., Zhang Q., Zhao J., Zhang L., Chem. J. Chinese Universities, 2021, 42(8), 2342—2358 |
117 | Yabuuchi N., Kubota K., Dahbi M., Komaba S., Chem. Rev., 2014, 114(23), 11636—11682 |
118 | Kim S. W., Seo D. H., Ma X., Ceder G., Kang K., Adv. Energy Mater., 2012, 2(7), 710—721 |
119 | Zhou G., Li F., Cheng H. M., Energy Environ. Sci., 2014, 7(4), 1307—1338 |
120 | Du Y., Gao X., Li S., Wang L., Wang B., Chin. Chem. Lett., 2020, 31(3), 609—616 |
121 | Wang Q., Chu S., Guo S., Chin. Chem. Lett., 2020, 31(9), 2167—2176 |
122 | Kundu D., Talaie E., Duffort V., Nazar L. F., Angew. Chem. Int. Ed., 2015, 54(11), 3431—3448 |
123 | Hwang J. Y., Myung S. T., Sun Y. K., Chem. Soc. Rev., 2017, 46(12), 3529—3614 |
124 | Jiang Y., Xie M., Wu F., Ye Z., Zhou Y., Li L., Chen R., Chin. Chem. Lett., 2022, 438, 134279 |
125 | Wang H., Zhu S., Deng J., Zhang W., Feng Y., Ma J., Chin. Chem. Lett., 2021, 32(1), 291—298 |
126 | Gao Z., Li J., Zhang Z., Hu W., Chin. Chem. Lett., 2022, 33(5), 2270—2280 |
127 | Wang Y., Li Q., Shi W., Cheng P., Chin. Chem. Lett., 2020, 31(7), 1768—1772 |
128 | Ji X., Wang Z., Chen X., Yu R., Chem. J. Chinese Universities, 2021, 42(5), 1377—1394 |
129 | Chang J., Xu G., Li H., Fang Q., Chem. J. Chinese Universities, 2020, 41(7), 1609—1614 |
130 | Dong B., Liu T., Li C., Zhang F., Chin. Chem. Lett., 2018, 29(5), 671—680 |
131 | Xia T., Lin Y., Li W., Ju M., Chin. Chem. Lett., 2021, 32(10), 2975—2984 |
132 | Tjandra A. D., Huang J., Chin. Chem. Lett., 2018, 29(6), 734—746 |
133 | Tong H., Ouyang S., Bi Y., Umezawa N., Oshikiri M., Ye J., Adv. Mater., 2012, 24(2), 229—251 |
134 | Chen X., Shen S., Guo L., Mao S. S., Chem. Rev., 2010, 110(11), 6503—6570 |
135 | Li S., Hou Y., Chen Q., Zhang X., Cao H., Huang Y., ACS Appl. Mater. Interfaces, 2020, 12(2), 2581—2590 |
136 | Han X., He X., Sun L., Han X., Zhan W., Xu J., Wang X., Chen J., ACS Catal., 2018, 8(4), 3348—3356 |
137 | Zhang L., Wu H., Lou X. W., Lou X. W., J. Am. Chem. Soc. 2013, 135(29) 10664—10672 |
138 | Hou C. C., Wang Y., Zou L., Wang M., Liu H., Liu Z., Wang H. F., Li C., Xu Q., Adv. Mater., 2021, 33(31), e2101698 |
139 | Li S., Wang L., Su H., Hong A. N., Wang Y., Yang H., Ge L., Song W., Liu J., Ma T., Bu X., Feng P., Adv. Funct. Mater., 2022, 32(23), 2200733 |
140 | Wu H. B., Xia B. Y., Yu L., Yu X. Y., Lou X. W., Nat. Commun., 2015, 6, 6512 |
141 | Hu Y., Li C., Xi S., Deng Z., Liu X., Cheetham A. K., Wang J., Adv. Sci., 2021, 8(4), 2003212 |
142 | Xu H., Zhao X., Yu C., Sun Y., Hui Z., Zhou R., Xue J., Dai H., Zhao Y., Wang L., Gong Y., Zhou J., An J., Chen Q., Sun G., Huang W., Nanoscale, 2020, 12(20), 11112—11118 |
143 | Mao D., Wan J., Wang J., Wang D., Adv. Mater., 2018, 33(38), 1802874 |
144 | Jayaramulu K., Horn M., Schneemann A., Saini H., Bakandritsos A., Ranc V., Petr M., Stavila V., Narayana C., Scheibe B., Kment S., Otyepka M., Motta N., Dubal D., Zboril R., Fischer R. A., Adv. Mater., 2021, 33(4), e2004560 |
145 | Shi L., Wu C., Wang Y., Dou Y., Yuan D., Li H., Huang H., Zhang Y., Gates I. D., Sun X., Ma T., Adv. Funct. Mater., 2022, 32(30), 2202571 |
146 | Tsuruoka T., Kumano M., Mantani K., Matsuyama T., Miyanaga A., Ohhashi T., Takashima Y., Minami H., Suzuki T., Imagawa K., Akamatsu K., Cryst. Growth Des., 2016, 16(5), 2472—2476 |
147 | Ohhashi T., Tsuruoka T., Fujimoto S., Takashima Y., Akamatsu K., Cryst. Growth Des., 2018, 18(1), 402—408 |
148 | Wang W., Yan H., Anand U., Mirsaidov U., J. Am. Chem. Soc., 2021, 143(4), 1854—1862 |
149 | Zhang J., Cheng N., Ge B., Adv. Phys. X, 2022, 7(1), 2046157 |
150 | Kang D. Y., Lee J. S., Lin L. C., Langmuir, 2022, 38(31), 9441—9453 |
151 | Wu C., Xie D., Mei Y., Xiu Z., Poduska K. M., Li D., Xu B., Sun D., Phys. Chem. Chem. Phys., 2019, 21(32), 17571—17577 |
152 | Braglia L., Borfecchia E., Maddalena L., Oien S., Lomachenko K. A., Bugaev A. L., Bordiga S., Soldatov A. V., Lillerud K. P., Lamberti C., Catal. Today, 2017, 283, 89—103 |
153 | Jo Y. M., Jo Y. K., Lee J. H., Jang H. W., Hwang I. S., Yoo D. J., Adv. Mater., 2022, e2206842 |
154 | Wu M. X., Yang Y. W., Adv. Mater., 2017, 29(23), 1606134 |
155 | Bhatt P. M., Guillerm V., Datta S. J., Shkurenko A., Eddaoudi M., Chem, 2020, 6(7), 1613—1633 |
[1] | LIN Junxu, XI Zhiwei, LI Zhiping, WANG Yingchun. Palladium Catalyzed Selective Synthesis of Pyrrolofuran Derivatives and Carbamates from Propargylic Alcohols and tert⁃Butyl Isonitrile [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220473. |
[2] | CHEN Shaochen, CHENG Min, WANG Shihui, WU Jinkui, LUO Lei, XUE Xiaoyu, JI Xu, ZHANG Changchun, ZHOU Li. Transfer Learning Modeling for Predicting the Methane and Hydrogen Delivery Capacity of Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220459. |
[3] | WANG Sijia, HOU Lu, LI Chenglong, LI Wencui, LU Anhui. Recent Advances in Synthesis and Applications of Hollow Nano-carbons [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220637. |
[4] | YANG Qingfeng, LYU Liang, LAI Xiaoyong. Progress on Preparation and Electrocatalytic Application of Hollow MOFs [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220666. |
[5] | YANG Jiye, SUN Dayin, WANG Yan, GU Anqi, YE Yilan, DING Shujiang, YANG Zhenzhong. Progresses in Template Synthesis and Applications of Hollow Materials [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220665. |
[6] | YE Zuyang, YIN Yadong. Etching-based Hollowing of Nanostructures [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220656. |
[7] | KUANG Huayi, CHEN Chen. Synthesis Methods and Electrocatalytic Performance of Noble-metal Nanoframes Catalysts [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220586. |
[8] | LU Yu, WANG Tie. Research Progress of Hollow Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220662. |
[9] | CAO Shujie, LI Hongjun, GUAN Wenli, REN Mengtian, ZHOU Chuanzheng. Progress on the Stereocontrolled Synthesis of Phosphorothioate Oligonucleotides [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220304. |
[10] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[11] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[12] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[13] | JIN Ruiming, MU Xiaoqing, XU Yan. Bio-chemical Synthesis of Melanin Precursor—— 5,6-Dihydroxyindole(DHI) [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220134. |
[14] | WEI Chunhong, JIANG Qian, WANG Panpan, JIANG Chengfa, LIU Yuefeng. Atomic Scale Investigation of Pt Atoms/clusters Promoted Co-catalyzed Fischer-Tropsch Synthesis [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220074. |
[15] | ZHANG Xinxin, XU Di, WANG Yanqiu, HONG Xinlin, LIU Guoliang, YANG Hengquan. Effect of Mn Promoter on CuFe-based Catalysts for CO2 Hydrogenation to Higher Alcohols [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||