Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (12): 20220575.doi: 10.7503/cjcu20220575
• Review • Previous Articles Next Articles
DONG Mingjie, WANG Xuan, DONG Haifeng(), ZHANG Xueji(
)
Received:
2022-08-30
Online:
2022-12-10
Published:
2022-10-21
Contact:
DONG Haifeng, ZHANG Xueji
E-mail:hfdong@szu.edu.cn;zhangxueji@szu.edu.cn
Supported by:
CLC Number:
TrendMD:
DONG Mingjie, WANG Xuan, DONG Haifeng, ZHANG Xueji. Applications of Metal-organic Frameworks in Cancer Theranostics[J]. Chem. J. Chinese Universities, 2022, 43(12): 20220575.
1 | Chen H. M., Zhang W. Z., Zhu G. Z., Xie J., Chen X. Y., Nat. Rev. Mater., 2017, 2(7), 1—18 |
2 | Luker G. D., Luker K. E., J. Nucl. Med., 2008, 49(1), 1—4 |
3 | Xu M. H., Wang L. H. V., Rev. Sci. Instrum., 2006, 77(4), 041101 |
4 | Jun Y. W., Huh Y. M., Choi J. S., Lee J. H., Song H. T., Kim S., Yoon S., Kim K. S., Shin J. S., Suh J. S., J. Am. Chem. Soc., 2005, 127(16), 5732—5733 |
5 | Mourtzakis M., Prado C. M. M., Lieffers J. R., Reiman T., McCargar L. J., Baracos V. E., Appl. Physiol. Nutr. Metab., 2008, 33(5), 997—1006 |
6 | Deng X. Y., Rong J., Wang L., Vasdev N., Zhang L., Josephson L., Liang S. H., Angew. Chem. Int. Ed., 2019, 58(9), 2580—2605 |
7 | Gerwing M., Herrmann K., Helfen A., Schliemann C., Berdel W. E., Eisenblätter M., Wildgruber M., Nat. Rev. Clin. Oncol., 2019, 16(7), 442—458 |
8 | Holohan C., van Schaeybroeck S., Longley D. B., Johnston P. G., Nat. Rev. Cancer, 2013, 13(10), 714—726 |
9 | Mallidi S., Anbil S., Bulin A. L., Obaid G., Ichikawa M., Hasan T., Theranostics, 2016, 6(13), 2458—2487 |
10 | Hompland T., Fjeldbo C. S., Lyng H., Cancers(Basel), 2021, 13(3), 499 |
11 | Nam J., Son S., Park K. S., Zou W. P., Shea L. D., Moon J. J., Nat. Rev. Mater., 2019, 4(6), 398—414 |
12 | Singh N., Son S., An J. S., Kim I., Choi M., Kong N., Tao W., Kim J. S., Chem. Soc. Rev., 2021, 50(23), 12883—12896 |
13 | Cai Y., Chen X. Y., Si J. X., Mou X. Z., Dong X. C., Small, 2021, 17(52), 2103072 |
14 | Johnson K. K., Koshy P., Yang J. L., Sorrell C. C., Adv. Funct. Mater., 2021, 31(43), 2104199 |
15 | Cheng L., Wang X. W., Gong F., Liu T., Liu Z., Adv. Mater., 2020, 32(13), 1902333 |
16 | Madamsetty V. S., Mukherjee A., Mukherjee S., Front. Pharmacol., 2019, 10, 1264 |
17 | Zhou H. C., Kitagawa S., Chem. Soc. Rev., 2014, 43(16), 5415—5418 |
18 | Qian Q. H., Asinger P. A., Lee M. J., Han G., Rodriguez K. M., Lin S., Benedetti F. M., Wu A. X., Chi W. S., Smith Z. P., Chem. Rev., 2020, 120(16), 8161—8266 |
19 | Li H. Y., Zhao S. N., Zang S. Q., Li J., Chem. Soc. Rev., 2020, 49(17), 6364—6401 |
20 | Wu C. D., Zhao M., Adv. Mater., 2017, 29(14), 1605446 |
21 | Lim D. W., Kitagawa H., Chem. Soc. Rev., 2021, 50(11), 6349—6368 |
22 | Lu K. D., Aung T., Guo N. N., Weichselbaum R., Lin W. B., Adv. Mater., 2018, 30(37), 1707634 |
23 | Liu J. T., Huang J., Zhang L., Lei J. P., Chem. Soc. Rev., 2021, 50(2), 1188—1218 |
24 | Wang F., Li Z., Zhang X. B., Luo R. A., Hou H. L., Lei J. P., Chem. Commun., 2021, 57(63), 7826—7829 |
25 | Rieter W. J., Taylor K. M. L., An H. Y., Lin W. L., Lin W. B., J. Am. Chem. Soc., 2006, 128(28), 9024—9025 |
26 | Giménez⁃Marqués M., Hidalgo T., Serre C., Horcajada P., Coord. Chem. Rev., 2016, 307, 342—360 |
27 | Cai Y., Wei Z., Song C. H., Tang C. C., Han W., Dong X. C., Chem. Soc. Rev., 2019, 48(1), 22—37 |
28 | Yang G. B., Phua S. Z. F., Bindra A. K., Zhao Y. L., Adv. Mater., 2019, 31(10), 1805730 |
29 | Zhao N. N., Yan L. M., Zhao X. Y., Chen X. Y., Li A. H., Zheng D., Zhou X., Dai X. G., Xu F. J., Chem. Rev., 2019, 119(3), 1666—1762 |
30 | Luo T. K., Nash G. T., Xu Z. W., Jiang X. M., Liu J. Q., Lin W. B., J. Am. Chem. Soc., 2021, 143(34), 13519—13524 |
31 | Zeng J. Y., Zhang M. K., Peng M. Y., Gong D., Zhang X. Z., Adv. Funct. Mater., 2018, 28(8), 1705451 |
32 | Li Y. L., Zhao P. R., Gong T., Wang H., Jiang X. W., Cheng H., Liu Y. Y., Wu Y. L., Bu W. B., Angew. Chem. Int. Ed., 2020, 59(50), 22537—22543 |
33 | Wu M. X., Yang Y. W., Adv. Mater., 2017, 29(23), 1606134 |
34 | Chowdhury M. A., J. Biomed. Mater. Res. Part A, 2017, 105(4), 1184—1194 |
35 | He F., Wen N. C., Xiao D. P., Yan J. H., Xiong H. J., Cai S. D., Liu Z. B., Liu Y. F., Curr. Med. Chem., 2020, 27(13), 2189—2219 |
36 | Zhou Z. J., Yang L. J., Gao J. H., Chen X. Y., Adv. Mater., 2019, 31(8), 1804567 |
37 | Pandey A., Dhas N., Deshmukh P., Caro C., Patil P., García⁃Martín M. L., Padya B., Nikam A., Mehta T., Mutalik S., Coord. Chem. Rev., 2020, 409, 213212 |
38 | Peller M., Böll K., Zimpel A., Wuttke S., Inorg. Chem. Front., 2018, 5(8), 1760—1779 |
39 | Hatakeyama W., Sanchez T. J., Rowe M. D., Serkova N. J., Liberatore M. W., Boyes S. G., ACS Appl. Mater. Interfaces, 2011, 3(5), 1502—1510 |
40 | Della Rocca J., Lin W. B., Eur. J. Inorg. Chem., 2010, 2010(24), 3725—3734 |
41 | Mao X. P., Xu J. D., Cui H. G., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(6), 814—841 |
42 | Rieter W. J., Pott K. M., Taylor K. M., Lin W. B., J. Am. Chem. Soc., 2008, 130(35), 11584—11585 |
43 | Qin L., Sun Z. Y., Cheng K., Liu S. W., Pang J. X., Xia L. M., Chen W. H., Cheng Z., Chen J. X., ACS Appl. Mater. Interfaces, 2017, 9(47), 41378—41386 |
44 | Liu C. H., Cao Y., Cheng Y. R., Wang D. D., Xu T. L., Su L., Zhang X. J., Dong H. F., Nat. Commun., 2020, 11(1), 1—9 |
45 | Yu S. J., Huang X. J., Xu C. F., Xu L. S., Sun Y., Shen Q. Y., Wang B., Zhu H. L., Lin W. X., Hu Q., J. Solid State Chem., 2022, 313, 123349 |
46 | Lee N., Hyeon T., Chem. Soc. Rev., 2012, 41(7), 2575—2589 |
47 | Horcajada P., Chalati T., Serre C., Gillet B., Sebrie C., Baati T., Eubank J. F., Heurtaux D., Clayette P., Kreuz C., Chang J. S., Hwang Y. K., Marsaud V., Bories P. N., Cynober L., Gil S., Ferey G., Couvreur P., Gref R., Nat. Mater., 2010, 9(2), 172—178 |
48 | Zhang Y., Liu C. Q., Wang F. M., Liu Z., Ren J. S., Qu X. G., Chem. Commun., 2017, 53(11), 1840—1843 |
49 | Horcajada P., Gref R., Baati T., Allan P. K., Maurin G., Couvreur P., Ferey G., Morris R. E., Serre C., Chem. Rev., 2012, 112(2), 1232—1268 |
50 | Yang J., Yang Y. W., View, 2020, 1(2), e28 |
51 | deKrafft K. E., Boyle W. S., Burk L. M., Zhou O. Z., Lin W. B., J. Mater. Chem., 2012, 22(35), 18139—18144 |
52 | Lu K. D., He C. B., Guo N. N., Chan C., Ni K. Y., Lan G. X., Tang H. D., Pelizzari C., Fu Y. X., Spiotto M. T., Weichselbaum R. R., Lin W. B., Nat. Biomed. Eng., 2018, 2(8), 600—610 |
53 | Zhang K., Meng X., Cao Y., Yang Z., Dong H. F., Zhang Y. D., Lu H. T., Shi Z. J., Zhang X. J., Adv. Funct. Mater., 2018, 28(42), 1804634 |
54 | Robison L., Zhang L., Drout R. J., Li P., Haney C. R., Brikha A., Noh H., Mehdi B. L., Browning N. D., Dravid V. P., Cui Q., Islamoglu T., Farha O. K., ACS Appl. Bio. Mater., 2019, 2(3), 1197—1203 |
55 | Zhang T., Wang L., Ma C., Wang W. Q., Ding J., Liu S., Zhang X. W., Xie Z. G., J. Mater. Chem. B, 2020, 8(48), 11107—11108 |
56 | Basu S., Alavi A., PET Clinics, 2016, 11(3), 203—207 |
57 | Duman F. D., Forgan R. S., J. Mater. Chem. B, 2021, 9(16), 3423—3449 |
58 | Chen D. Q., Yang D. Z., Dougherty C. A., Lu W. F., Wu H. W., He X. R., Cai T., Van Dort M. E., Ross B. D., Hong H., ACS Nano, 2017, 11(4), 4315—4327 |
59 | Abazari R., Ataei F., Morsali A., Slawin A. M., Z. Carpenter⁃Warren C. L., ACS Appl. Mater. Interfaces, 2019, 11(49), 45442—45454 |
60 | Wang W. Q., Wang L., Li Z. S., Xie Z. G., Chem. Commun., 2016, 52(31), 5402—5405 |
61 | Zhang H., Tian X. T., Shang Y., Li Y. H., Yin X. B., ACS Appl. Mater. Interfaces, 2018, 10(34), 28390—28398 |
62 | Liu Y., Gong C. S., Dai Y. L., Yang Z., Yu G. C., Liu Y. J., Zhang M. R., Lin L. S., Tang W., Zhou Z. J., Zhu G. Z., Chen J. J., Jacobson O., Kiesewetter D. O., Wang Z. T., Chen X. Y., Biomaterials, 2019, 218, 119365 |
63 | Li S. Y., Cheng H., Xie B. R., Qiu W. X., Zeng J. Y., Li C. X., Wan S. S., Zhang L., Liu W. L., Zhang X. Z., ACS Nano, 2017, 11(7), 7006—7018 |
64 | Mei J., Leung N. L. C., Kwok R. T. K., Lam J. W. Y., Tang B. Z., Chem. Rev., 2015, 115(21), 11718—11940 |
65 | Cai X. L., Liu B., Angew. Chem. Int. Ed., 2020, 59(25), 9868—9886 |
66 | Dong M. J., Li W. Q., Xiang Q., Tan Y., Xing X. T., Wu C. X., Dong H. F., Zhang X. J., ACS Appl. Mater. Interfaces, 2022, 14(26), 29599—29612 |
67 | Taylor⁃Pashow K. M. L., Della Rocca J., Xie Z. G., Tran S., Lin W. B., J. Am. Chem. Soc., 2009, 131(40), 14261—14263 |
68 | Emelianov S. Y., Li P. C., O’Donnell M., Phys. Today, 2009, 62(5), 34—39 |
69 | Zhou G. X., Wang Y. S., Jin Z. K., Zhao P. H., Zhang H., Wen Y. Y., He Q. J., Nanoscale Horiz., 2019, 4(5), 1185—1193 |
70 | Zhang K., Yu Z. F., Meng X. D., Zhao W. D., Shi Z. J., Yang Z., Dong H. F., Zhang X. J., Adv. Sci., 2019, 6(14), 1900530 |
71 | Wu M. X., Gao J., Wang F., Yang J., Song N., Jin X. Y., Mi P., Tian J., Luo J. Y., Liang F., Yang Y. W., Small, 2018, 14(17), 1704440 |
72 | Zhang H. P., Zhang Q., Liu C. S., Han B., Biomater. Sci., 2019, 7(4), 1696—1704 |
73 | Zhuang Y. X., Katayama Y., Ueda J., Tanabe S., Opt. Mater., 2014, 36(11), 1907—1912 |
74 | Lv Y., Ding D. D., Zhuang Y. X., Feng Y. S., Shi J. P., Zhang H. W., Zhou T. L., Chen H. M., Xie R. J., ACS Appl. Mater. Interfaces, 2019, 11(2), 1907—1916 |
75 | Duman F. D., Hocaoglu I., Ozturk D. G., Gozuacik D., Kiraz A., Acar H. Y., Nanoscale, 2015, 7(26), 11352—11362 |
76 | Aguilera⁃Sigalat J., Bradshaw D., Coord. Chem. Rev., 2016, 307, 267—291 |
77 | Zhao A. D., Chen Z. W., Zhao C. Q., Gao N., Ren J. S., Qu X. G., Carbon, 2015, 85, 309—327 |
78 | Xiang Q., Li W., Tan Y., Shi J. W., Dong M. J., Cheng J. L., Huang J. K., Zhang W. Y., Gong Y. C., Yang Q. Q., Yang L. Z., Dong H. F., Zhang X. J., Chem. Eng. J., 2022, 444, 136706 |
79 | Zhang Y., Wang L., Liu L., Lin L., Liu F., Xie Z. G., Tian H. Y., Chen X. S., ACS Appl. Mater. Interfaces, 2018, 10(48), 41035—41045 |
80 | Zhang K., Meng X. D., Yang Z., Dong H. F., Zhang X. J., Biomaterials, 2020, 258, 120278 |
81 | Wang D. D., Wu H. H., Lim W. Q., Phua S. Z. F., Xu P. P., Chen Q. W., Guo Z., Zhao Y. L., Adv. Mater., 2019, 31(27), 1901893 |
82 | Pan X. T., Wang W. W., Huang Z. J., Liu S., Guo J., Zhang F. R., Yuan H. J., Li X., Liu F. Y., Liu H. Y., Angew. Chem. Int. Ed., 2020, 132(32), 13659—13633 |
83 | Yang P., Tian Y., Men Y. Z., Guo R. R., Peng H. B., Jiang Q., Yang W. L., ACS Appl. Mater. Interfaces, 2018, 10(49), 42039—42049 |
[1] | LU Yu, WANG Tie. Research Progress of Hollow Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220662. |
[2] | LU Meiru, ZHANG Hongyu, SHI Baimei, SUN Maozhong, XU Liguang, XU Chuanlai, KUANG Hua. Chiral Nanomaterials: Bioimaging, Biosensing and Therapeutics [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220683. |
[3] | MA Xiaofei, HU Shan, LI Junbin, YANG Sheng, CHEN Weiju, QING Zhihe, ZHOU Yibo, YANG Ronghua. Cellular Endogenous Molecule-assisted Fluorescence Signal Amplification Strategy and the Application of Cell Imaging [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220320. |
[4] | CHANG Tonghang, CHENG Zhen. Research Progress of Organic Small Molecule Theranostic Probes Integrating Fluorescence Imaging and Chemotherapy [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220430. |
[5] | ZHANG Qingpeng, GUAN Guoqiang, LIU Huiyi, LU Chang, ZHOU Ying, SONG Guosheng. Recent Development of Magnetic Particle Imaging Tracers [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220375. |
[6] | XU Xinyu, ZHANG Letian, CAO Hui, MA Yuan, LIU Liuhui, SONG Guosheng, ZHANG Xiaobing. Recent Advances in Lipid-responsive Probes in the Imaging and Treatment of Atherosclerosis [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220383. |
[7] | CHEN Shangyu, SHEN Qingming, SUN Pengfei, FAN Quli. Small-molecule-based Thermosensitive Polymer Nanoparticles for NIR-Ⅱ Fluorescence Imaging and Photothermal Therapy [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220392. |
[8] | TANG Qiaowei, CAI Xiaoqing, LI Jiang, ZHU Ying, WANG Lihua, TIAN Yang, FAN Chunhai, HU Jun. Synchrotron-based X-ray Microscopy for Brain Imaging [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220379. |
[9] | CHU Binbin, HE Yao. Silicon-based Nanoprobes for Imaging Detection and Therapy of Ocular Diseases [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220546. |
[10] | XU Haidong, WANG Rui, LIANG Gaolin. Applications of Self-assembled Peptide Probes in Magnetic Resonance Imaging [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220440. |
[11] | YANG Yanling, YE Deju. Recent Advances in the Development of Molecular Probes for Targeting Carbonic Anhydrases [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220557. |
[12] | LI Ao, LI Lingxuan, ZUO Cuicui, CHEN Chuankai, FAN Yifan, BU Yifan, LIN Hongyu, GAO Jinhao. Boronate-based 19F NMR/MRI Molecular Probe for Activatable Deep-tissue Imaging of Reactive Oxygen Species [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220545. |
[13] | YE Zhuo, JI Moxuan, LIU Dingbin. Advances of Optical Probes in Atherosclerosis Imaging [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220556. |
[14] | WANG Shiqi, LUO Bowen, YU Jicheng, GU Zhen. Near-infrared-Ⅱ Fluorescence Imaging for Tumor Diagnosis and Therapy [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220577. |
[15] | ZHAO Hengzhi, YU Fangzhi, LI Xiangfei, LI Lele. Advances in Biosensing and Imaging Based on the Integration of DNA and Upconversion Nanoparticles [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220626. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||