Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (11): 2287.doi: 10.7503/cjcu20200404
Previous Articles Next Articles
ZHU Yuquan, ZHAO Xiaojie, ZHONG Yuan, CHEN Ziru, YAN Hong(), DUAN Xue
Received:
2020-06-30
Online:
2020-11-10
Published:
2020-11-06
Contact:
YAN Hong
E-mail:yanhong@mail.buct.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHU Yuquan, ZHAO Xiaojie, ZHONG Yuan, CHEN Ziru, YAN Hong, DUAN Xue. Theoretical Study on the Construction and Characteristics of the Host-guest Intercalated Structure of Layered Double Hydroxides[J]. Chem. J. Chinese Universities, 2020, 41(11): 2287.
LDHs | Cell parameter/? | Mg(II) | Ca(II) | Co(II) | Ni(II) | Cu(II) | Zn(II) |
---|---|---|---|---|---|---|---|
M2Al?LDHs | a, b | 3.08[ | 5.75[ | 3.10[ | 3.03[ | 2.93[ | 3.08[ |
c | 7.86[ | 23.49[ | 22.47[ | 25.94[ | 26.10[ | 7.75[ | |
M2Cr?LDHs | a, b | 3.01[ | 2.99[ | 3.55[ | 3.58[ | 3.57[ | |
c | 22.80[ | 22.80[ | 22.80[ | ||||
M2Mn?LDHs | a, b | 3.05[ | 3.06[ | ||||
c | |||||||
M2Fe?LDHs | a, b | 3.11[ | 5.86[ | 3.13[ | 3.03[ | 3.03[ | |
c | 23.19[ | 23.31[ | 24.92[ | 22.18[ | 23.58[ | ||
M2Ga?LDHs | a, b | 3.09[ | 5.83[ | 3.08[ | 3.06[ | 3.20[ | |
c | 23.42[ | 22.80[ | 22.98[ | 5.20[ | |||
M2Ti?LDHs | a, b | 2.92[ | 3.02[ | 3.07[ | 3.06[ | ||
c | 24.33[ | 21.43[ | 22.16[ | 22.15[ |
LDHs | Cell parameter/? | Mg(II) | Ca(II) | Co(II) | Ni(II) | Cu(II) | Zn(II) |
---|---|---|---|---|---|---|---|
M2Al?LDHs | a, b | 3.08[ | 5.75[ | 3.10[ | 3.03[ | 2.93[ | 3.08[ |
c | 7.86[ | 23.49[ | 22.47[ | 25.94[ | 26.10[ | 7.75[ | |
M2Cr?LDHs | a, b | 3.01[ | 2.99[ | 3.55[ | 3.58[ | 3.57[ | |
c | 22.80[ | 22.80[ | 22.80[ | ||||
M2Mn?LDHs | a, b | 3.05[ | 3.06[ | ||||
c | |||||||
M2Fe?LDHs | a, b | 3.11[ | 5.86[ | 3.13[ | 3.03[ | 3.03[ | |
c | 23.19[ | 23.31[ | 24.92[ | 22.18[ | 23.58[ | ||
M2Ga?LDHs | a, b | 3.09[ | 5.83[ | 3.08[ | 3.06[ | 3.20[ | |
c | 23.42[ | 22.80[ | 22.98[ | 5.20[ | |||
M2Ti?LDHs | a, b | 2.92[ | 3.02[ | 3.07[ | 3.06[ | ||
c | 24.33[ | 21.43[ | 22.16[ | 22.15[ |
LDHs | Exchange?correlation functional | Cutoff energy/eV | k?Points mesh | Unit cell parameter | |||
---|---|---|---|---|---|---|---|
a/? | b/? | c/? | V/?3 | ||||
ZnAl?Cl?LDH | GGA/PBE[ | 408 | 3×3×2 | 3.13 | 3.13 | 23.47 | |
(supercell: | GGA/revPBE?vdW[ | 408 | 3×3×2 | 3.18 | 3.18 | 23.87 | |
Experimental[ | 3.08 | 3.08 | 23.35 | ||||
MgFe?CO3?LDH | GGA/PW91[ | 480 | 2×2×2 | 3.07 | 3.08 | 22.81 | 186.90 |
(supercell: | GGA spin polarized[ | 480 | 2×2×2 | 3.10 | 3.11 | 22.82 | 190.38 |
GGA+U[ | 480 | 2×2×2 | 3.14 | 3.14 | 22.80 | 194.77 | |
Experimental[ | 3.10 | 3.10 | 23.17 | 192.83 |
LDHs | Exchange?correlation functional | Cutoff energy/eV | k?Points mesh | Unit cell parameter | |||
---|---|---|---|---|---|---|---|
a/? | b/? | c/? | V/?3 | ||||
ZnAl?Cl?LDH | GGA/PBE[ | 408 | 3×3×2 | 3.13 | 3.13 | 23.47 | |
(supercell: | GGA/revPBE?vdW[ | 408 | 3×3×2 | 3.18 | 3.18 | 23.87 | |
Experimental[ | 3.08 | 3.08 | 23.35 | ||||
MgFe?CO3?LDH | GGA/PW91[ | 480 | 2×2×2 | 3.07 | 3.08 | 22.81 | 186.90 |
(supercell: | GGA spin polarized[ | 480 | 2×2×2 | 3.10 | 3.11 | 22.82 | 190.38 |
GGA+U[ | 480 | 2×2×2 | 3.14 | 3.14 | 22.80 | 194.77 | |
Experimental[ | 3.10 | 3.10 | 23.17 | 192.83 |
Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV |
---|---|---|---|---|---|---|---|
Co2+ | 3.52[ | Cu2+ | 3.6[ | Mn3+ | 3.54[ | Ti4+ | 6.0[ |
Ni2+ | 3.8[ | Cr3+ | 3.2[ | Fe3+ | 4.3[ |
Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV |
---|---|---|---|---|---|---|---|
Co2+ | 3.52[ | Cu2+ | 3.6[ | Mn3+ | 3.54[ | Ti4+ | 6.0[ |
Ni2+ | 3.8[ | Cr3+ | 3.2[ | Fe3+ | 4.3[ |
Bond length and bond angle | M=Mg2+ | M=Ca2+ | ||
---|---|---|---|---|
6?31G(d) | LANL2DZ/6?31G(d) | 6?31G(d) | LANL2DZ/6?31G(d) | |
M—O(in ?)a | 2.202 | 2.191 | 2.510 | 2.505 |
Al—O3(in ?) | 1.884 | 1.885 | 1.874 | 1.877 |
M1???M2(in ?) | 3.150 | 3.139 | 3.774 | 3.743 |
M???Al(in ?)b | 3.042 | 3.037 | 3.365 | 3.366 |
O3—H(in ?) | 0.968 | 0.968 | 0.968 | 0.969 |
O—M—O(in degree)c | 76.70 | 76.81 | 71.81 | 71.85 |
O—Al—O(in degree)d | 86.56 | 86.36 | 90.43 | 90.34 |
Bond length and bond angle | M=Mg2+ | M=Ca2+ | ||
---|---|---|---|---|
6?31G(d) | LANL2DZ/6?31G(d) | 6?31G(d) | LANL2DZ/6?31G(d) | |
M—O(in ?)a | 2.202 | 2.191 | 2.510 | 2.505 |
Al—O3(in ?) | 1.884 | 1.885 | 1.874 | 1.877 |
M1???M2(in ?) | 3.150 | 3.139 | 3.774 | 3.743 |
M???Al(in ?)b | 3.042 | 3.037 | 3.365 | 3.366 |
O3—H(in ?) | 0.968 | 0.968 | 0.968 | 0.969 |
O—M—O(in degree)c | 76.70 | 76.81 | 71.81 | 71.85 |
O—Al—O(in degree)d | 86.56 | 86.36 | 90.43 | 90.34 |
1 | Cavani F., Trifiro F., Vaccari A., Catal. Today, 1991, 11(2), 173—301 |
2 | Rives V., Layered Double Hydroxides: Present and Future, Nova Science Publishers, New York, 2001, 194—195 |
3 | Duan X., Evans D. G., Layered Double Hydroxides: Structure and Bonding, Springer⁃Verlag, Berlin, 2006, 41(4), 879 |
4 | Bhattacharyya A., Hall D. B., Inorg. Chem., 1992, 31(18), 3869—3870 |
5 | Maritin K. J., Pinnavaia T. J., J. Am. Chem. Soc., 1986, 108(3), 541—542 |
6 | Jones W., Chibwe M., Pillared Layered Structures: Current Trends and Applications, Elsevier, London, 1990, 67—77 |
7 | Dimotakis E. D., Pinnavaia T. J., Inog. Chem., 1990, 29(13), 2393—2394 |
8 | Rives V., Ulibarri M. A., Coord. Chem. Rev., 1999, 181(1), 61—120 |
9 | Chibwe K., Jones W., Chem. Mater., 1989, 1(5), 489—490 |
10 | Giannelis E. P., Nocera D. G., Pinnavaia T. J., Inorg. Chem., 1987, 26(1), 203—205 |
11 | Itaya K., Chang H. C., Uchida I., Inorg. Chem., 1987, 26(4), 624—626 |
12 | Lopez⁃Salinas E., Ono Y., Micropor. Mater., 1993, 1(1), 33—42 |
13 | Kwon T., Pinnavaia T. J., Chem. Mater., 1989, 1(4), 381—383 |
14 | Ulibarri M. A., Labajos F. M., Rives V., Trujllano R., Kagunga W., Jones W., Inorg. Chem., 1994, 33(12), 2592—2599 |
15 | Choy J. H., Kwak S. Y., Park J. S., Jeong Y. J., Portier J., J. Am. Chem. Soc., 1999, 121(6), 1399—1400 |
16 | Theiss F. L., Ayoko G. A., Frost A. R., Appl. Surf. Sci., 2016, 383, 200—213 |
17 | Bookin A. S., Drits V. A., Clays Clay Miner., 1993, 41(5), 551—557 |
18 | Guo L. F., Feng L., Evans D. G., Duan X., Chem. Soc. Rev., 2014, 43(20), 7040—7066 |
19 | Guo L., Wu Y. Y., Duan P., Zhang Z. H., Constr. Build Mater., 2020, 232, 117—256 |
20 | Yue X. J., Li J. X., Zhang T., Qiu F. X., Yang D. Y., Xue M. W., Chem. Eng. J., 2017, 328(15), 117—123 |
21 | Lee J. H., Rhee S. W., Jung D. Y., Chem. Commun., 2003, 9(21), 2740—2741 |
22 | Liu Z. P., Ma R. Z., Osada M., Iyi N., Ebina Y., Takada K., Sasaki T., J. Am. Chem. Soc., 2006, 128(14), 4872—4880 |
23 | Vaccari A., Appl. Clay Sci., 1999, 14(4), 161—198 |
24 | Vaccari A., Catal. Today, 1998, 41(1—3), 53—71 |
25 | Sels B. F., de Vos. D., Buntinx M., Pierard F., Mesmaeker A. K. D., Jacobs P., Nature, 1999, 400(26), 855—857 |
26 | Zhao Y. F., Jia X. D., Waterhouse G. I. N., Wu L. Z., Tung C. H., O’Hare D., Zhang T. R., Adv. Energy Mater., 2016, 6(6), 1501974 |
27 | Yan H., Wei M., Ma J., Li F., Evans D. G., Duan X., J. Phys. Chem. A, 2009, 113(21), 6133—6141 |
28 | Xu S. M., Pan T., Dou Y. B., Yan H., Zhang S. T., Ning F. Y., Shi W. Y., Wei M., J. Phys. Chem. C, 2015, 119(33), 18823— 18834 |
29 | Xu S. M., Yan H., Wei M., J. Phys. Chem. C, 2017, 121(5), 2683—2695 |
30 | Tsukanov A. A., Psakhie S. G., Sci Rep., 2016, 6(1), 19986 |
31 | Mohapatra L., Parida K. M., J. Mater. Chem. A, 2016, 4(28), 10744—10766 |
32 | Peterson R. C., Hill R. J., Gibbss G. V., Can. Mineral., 1979, 17(4), 703—711 |
33 | Sauer J., Chem. Rev., 1989, 89(1), 199—255 |
34 | Liu H. M., Zhao X. J., Zhu Y. Q., Yan H., Phys. Chem. Chem. Phys., 2020, 22, 2521—2529 |
35 | Dias A., Cunha L., Vieira A. C., Mater. Res. Bull., 2011, 46(9), 1346—1351 |
36 | Miyata S., Clays Clay Miner., 1983, 31, 305—311 |
37 | Rousselot I., Taviot⁃Guého C., Leroux F., Léone P., Palvadeau P., Besse J. P., J. Solid State Chem., 2002, 167(1), 137—144 |
38 | Han J., Dou Y., Zhao J., Wei M., Evans D. G., Duan X., Small, 2013, 9, 98—106 |
39 | Caravaggio G. A., Detellier C., Wronski Z., J. Mater. Chem., 2001, 11(3), 912—921 |
40 | Li M. , Li L., Lin S., Chin. Chem. Lett., 2020, 31(6), 1511—1515 |
41 | Aisawa S., Takahashi S., Ogasawara W., Umetsu Y., Narita E., J. Solid State Chem., 2001, 162(1), 52—62 |
42 | Israëli Y., Guého C.T., Besse J.P., Morel J.P., Desrosiers N. M., J. Chem. Soc., Dalton Trans., 2000, 5, 791—796 |
43 | Maeda K., Domen K., Phys. Chem. Lett., 2010, 1(18), 2655—2661 |
44 | Baliarsingh N., Parida K. M., Pradhan G. C., Ind. Eng. Chem. Res., 2014, 53(10), 3834—3841 |
45 | Jiratova K., Kovanda F., Ludvikova J., Balabanova J., Klempa J., Catal. Today, 2016, 277, 61—67 |
46 | Li M., Cheng J. P., Wang J., Liu F., Zhang X. B., Electrochim. Acta, 2016, 206, 108—115 |
47 | Zhang H., Qi R., Liu L. N., Duan X., Chin. J. Chem. Phys., 2003, 16(1), 45—50 |
48 | Al-Jaberi M., Naille S., Dossot M., Ruby C., J. Mol. Struct., 2015, 1102, 253—260 |
49 | Ma R., Liu Z., Takada K., Iyi N., Bando Y., Sasaki T., J. Am. Chem. Soc., 2007, 129(16), 5257—5263 |
50 | Allmann R., Jepsen H., Jhb. Miner. Mh., 1969, 12, 544—551 |
51 | Unal U., J. Sol. State Chem., 2007, 180(9), 2525—2533 |
52 | Zhang J., Dong C., Wang Z., Gao H., Niu J., Peng Z., Zhang Z., Small Methods, 2018, 3(2), 1800286 |
53 | Altuntasoglu O., Unal U., Ida S., Goto M., Matsumoto Y., J. Solid State Chem., 2008, 181(12), 3257—3263 |
54 | Yang J. H., Pei Y. R., Kim S. J., Choi G., Vinu A., Choy J. H., Ind. Eng. Chem. Res., 2008, 57(48), 16264—16271 |
55 | Chowdhury P. R., Bhattacharyya K. G., RSC Adv., 2015, 5(112), 92189—92206 |
56 | Shu X., Zhang W., He J., Gao F., Zhu Y., Solid State Sci., 2006, 8(6), 634—639 |
57 | Yan H., Wei M., Ma J., Evans D. G., Duan X., J. Phys. Chem. A, 2010, 114(27), 7369—7376 |
58 | Costa D. G., Rocha A. B., Souza W. F., Chiaro S. S. X., Leitão A. A., Appl. Clay Sci., 2012, 56, 16—22 |
59 | Moraes P. I. R., Tavares S. R., Vaiss V. S., Leitão A. A., J. Phys. Chem. C, 2016, 120(18), 9965—9974 |
60 | Radha A.V., Kamath P.V., Shivakumara C., J. Phys. Chem. B, 2007, 111(13), 3411—3418 |
61 | Manohara G. V., Prasanna S. V., Kamath P. V., Eur. J. Inorg. Chem., 2011, 16, 2624—2630 |
62 | Rohrbach A., Hafner J., Kresse G., J. Phys. Condens.Mat., 2003, 15(6), 979—996 |
63 | Bajdich M., García-Mota M., Vojvodic A., Nørskov J. K., Bell A. T., J. Am. Chem. Soc., 2013, 135(36), 13521—13530 |
64 | Liao P., Keith J. A., Carter E. A., J. Am. Chem. Soc., 2012, 134(32), 13296—13309 |
65 | Kronawitter C. X., Riplinger C., He X., Zahl P., Carter E. A., Sutter P., Koel B. E., J. Am. Chem. Soc., 2014, 136(38), 13283—13288 |
66 | Mosey N. J., Liao P., Carter E. A., J. Chem. Phys., 2008, 129(1), 014103 |
67 | Kanan D. K., Carter E. A., J. Phys. Chem. C, 2012, 116(18), 9876—9887 |
68 | Zhou F., Cococcioni M., Marianetti C. A., Morgan D., Ceder G., Phys. Rev. B, 2004, 70(23), 235121 |
69 | Yan H., Wei M., Ma J., Duan X., Particuology, 2010, 8, 212—220 |
70 | Hu S., Sun Y., Pu M., Yun R., Xiang X., Sep. Purif. Technol., 2019, 229, 115813 |
71 | Cygan R. T., Liang J. J., Kalinichev A. G., J. Phys. Chem. B, 2004, 108(4), 1255—1266 |
72 | Kim N., Harale A., Tsotsis T. T., Sahimi M., J. Chem. Phys., 2007, 127(22), 224701—224782 |
73 | Pisson J., Morel J. P., Morel-Desrosiers N., Taviot⁃Gueho C., Malfreyt P., J. Phys. Chem. B, 2008, 112(26), 7856—7864 |
74 | Aicken A. M., Bell I. S., Coveney P. V., Jones W., Adv. Mater., 1997, 9(6), 409—500 |
75 | Zhang S. T., Yan H., Wei M., Evans D. G., Duan X., J. Phys. Chem. C, 2012, 116(5), 3421—3431 |
76 | Pan T., Xu S. M., Dou Y. B., Liu X. X., Li Z. Z., Han J. B., Yan H., Wei M., J. Mater. Chem. A, 2015, 3(23), 12350—12356 |
77 | Dou Y. B., Xu S. M., Liu X. X., Han J. B., Yan H., Wei M., Evans D. G., Duan X., Adv. Funct. Mater., 2014, 24(4), 514—521 |
78 | Dou Y. B., Pan T., Xu S. M., Yan H., Han J. B., Wei M., Evans D. G., Duan X., Angew. Chem., 2015, 127(33), 9809—9814 |
79 | Kaassis A. Y. A., Xu S. M., Evans D. G., Williams G. R., Wei M., Duan X., J. Phys. Chem. C, 2015, 119(32), 18729—18740 |
80 | Xu S. M., Zhang S. T., Shi W. Y., Ning F. Y., Fu Y., Yan H., RSC Adv., 2014, 4(88), 47472—47480 |
81 | Lv K., Kang H., Zhang H., Yuan S., Colloid Surface A, 2012, 402, 108—116 |
82 | Wang N., Huang Z., Li X., Li J., Ji S., An Q. F., J. Mater. Chem. A, 2018, 35(6), 17148—17155 |
83 | Qian Y. T., Introduction to Crystal Chemistry, University of Science and Technology of China Press, Hefei, 2005(钱逸泰. 结晶化学导论, 合肥: 中国科学技术大学出版社, 2005) |
84 | Millange F., Walton R. I., Lei L., O’Hare D., Chem. Mater., 2000, 12(7), 1990—1994 |
85 | Vivhi F. M., Alves O. L., J. Mater. Chem., 1997, 7(8), 1631—1634 |
86 | Basile F., Fornasari G., Gazzano M., Vaccari A., Appl. Clay Sci., 2001, 18(1/2), 51—57 |
87 | Basile F., Formasari G., Gazzano M., Vaccari A., Appl. Clay Sci., 2000, 16(3/4), 185—200 |
88 | Yan H., Lu J., Wei M., Ma J., Li H., He J., Evans D. G., Duan X., J. Mol. Struc⁃Theochem., 2008, 866(1—3), 34—45 |
89 | Yan H., Zhao X. J., Zhu Y. Q., Wei M., Evans D. G., Duan X., Struct. Bond., 2019, 182, 89—120 |
90 | Wang X. R., Li Y., Tang L. P., Gan W., Zhou W., Zhao Y. F., Bai D. S., Chinese Chem. Lett., 2017, 28(2), 394—399 |
91 | Ding S., Du X., Yang Y., Wang P., Zhang Z., Hao X., Peng C., Guan G., Phys. Chem. Chem. Phys.,2018, 20(25), 17313—17323 |
92 | Hibino T., Tsunashima A., J. Mater. Sci Lett., 2000, 19, 1403—1405 |
93 | Carvalho H. W. P., Pulcinelli S. H., Santilli C. V., Leroux F., Meneau F., Briois V., Chem. Mater., 2013, 25(14), 2855—2867 |
94 | Zhang S. T., Dou Y., Zhou J., Pu M., Yan H., Wei M., Evans D. G., Duan X., Chem. Phys. Chem., 2016, 17(17), 2754—2766 |
95 | Meng Q. T., Yan H., Mol. Simulat., 2017, 43(13—16), 1338—1347 |
96 | Meng Q. T., Yan H., Sci. China Chem., 2017, 47(4), 493—502(孟庆婷, 鄢红. 中国科学: 化学, 2017, 47(4), 493—502) |
97 | Constantino V. R. L., Pinnavaia T. J., Catal. Lett., 1994, 23(3), 361—367 |
98 | Liu X., Zhao X. F., Zhu Y., Zhang F. Z., Appl. Catal. B, 2013, 140/141, 241—248 |
99 | Pisson J., Morel⁃Desrosiers N., Morel J. P., Roy A., Leroux F., Taviot⁃Guého C., Malfreyt P., Chem. Mater., 2011, 23(6), 1482—1490 |
100 | Li H., Ma J., Evans D. G., Zhou T., Li F., Duan X., Chem. Mater., 2006, 18(18), 4405—4414 |
101 | Kumar P. P., Kalinichev A. G., Kirkpatrick R. J., J. Phys. Chem. C, 2007, 111(36), 13517—13523 |
102 | Petrova N., Mizota T., Stanimirova T., Kirov G., Micropor. Mesopor. Mater., 2003, 63(1—3), 139—145 |
103 | Kumar P. P., Kalinichev A. G., Kirkpatrick R. J., J Phys. Chem. B, 2006, 110(9), 3841—3844 |
104 | Kalinichev A. G., Kumar P. P., Kirkpatrick R. J., Philos. Mag., 2010, 90, 2475—2488 |
105 | Wang J. W., Kalinichev A. G., Kirkpatrick R. J., Hou X. Q., Chem. Mater., 2001, 13(1), 145—150 |
106 | Costa D. G., Rocha A. B., Souza W. F., Chiaro S. S. X., Leitão A. A., J. Phys. Chem. B, 2011, 115(13), 3531—3537 |
107 | Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J., Pure Appl. Chem., 2011, 83(8), 1637—1641 |
108 | Xu Q., Ni Z. M., Yao P., Li Y., J. Mol. Struct., 2010, 977(1—3), 165—169 |
109 | Prasad B. E., Kamath P. V., Vijayamohanan K., Langmuir, 2011, 27(22), 13539—13543 |
110 | Rahman M. T., Kameda T., Miura T., Kumagai S., Yoshioka T., J. Mate. Cycles Waste Manage., 2019, 21(5), 1232—1241 |
111 | Li L., Zhao K. C., Liu P. F., Zhu K., RSC. Adv., 2014, 4(35), 18086—18093 |
112 | Costa D. G., Rocha A. B., Diniz R., Souza W. F., Chiaro S. S. X., Leitão A. A., J. Phys. Chem. C, 2010, 114(33), 14133—14140 |
113 | Nangoi I. M., Tavares S. R., Wypych F., Leitão A. A., Appl. Clay Sci., 2019, 179, 105153 |
114 | Yan D. P., Lu J., Wei M., Ma J., Evans D. G., Duan X., Chem. Commun., 2009, 42, 6358—6360 |
115 | Zhang G., Zhang X., Meng Y., Pan G., Ni Z., Xia S., Chem. Eng. J., 2020, 392, 123684 |
116 | Xia S., Qian M., Zhou X., Meng Y., Xue J., Ni Z., Mol. Catal., 2017, 435, 118—127 |
117 | Xia S., Zhang G., Meng Y., Yang C., Ni Z., Hu J., Appl. Catal. B-Environ., 2020, 278, 119266 |
118 | Wu M. J., Wu J. Z., Zhang J., Chen H., Zhou J. Z., Qian G. R., Xu Z. P., Du Z., Rao Q. L., Catal. Sci. Technol., 2018, 8(5), 1207—1228 |
119 | Li X., Xin M., Guo S., Cai T., Du D., Xing W., Zhao L., Guo W., Xue Q., Yan Z., Electrochim. Acta, 2017, 253, 302—310 |
120 | Lv M., Liu H., J. Solid State Chem., 2015, 227, 232—238 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[3] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[4] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[5] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[6] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[7] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[8] | GAO Zhiwei, LI Junwei, SHI Sai, FU Qiang, JIA Junru, AN Hailong. Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220080. |
[9] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[10] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[11] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[12] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[13] | ZENG Xianyang, ZHAO Xi, HUANG Xuri. Mechanism of Inhibition of Glucose and Proton Cotransport Protein GlcPSe by Cytochalasin B [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210822. |
[14] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
[15] | CHEN Hanxiang, BIAN Shaoju, HU Bin, LI Wu. Molecular Simulation of the Osmotic Pressures for LiCl-NaCl-KCl-H2O Solution System [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210727. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||