Chemical Journal of Chinese Universities ›› 2020, Vol. 41 ›› Issue (11): 2287-2305.doi: 10.7503/cjcu20200404
Previous Articles Next Articles
ZHU Yuquan, ZHAO Xiaojie, ZHONG Yuan, CHEN Ziru, YAN Hong(), DUAN Xue
Received:
2020-06-30
Online:
2020-11-10
Published:
2020-11-06
Contact:
YAN Hong
E-mail:yanhong@mail.buct.edu.cn
Supported by:
CLC Number:
ZHU Yuquan, ZHAO Xiaojie, ZHONG Yuan, CHEN Ziru, YAN Hong, DUAN Xue. Theoretical Study on the Construction and Characteristics of the Host-guest Intercalated Structure of Layered Double Hydroxides[J]. Chemical Journal of Chinese Universities, 2020, 41(11): 2287-2305.
LDHs | Cell parameter/? | Mg(II) | Ca(II) | Co(II) | Ni(II) | Cu(II) | Zn(II) |
---|---|---|---|---|---|---|---|
M2Al?LDHs | a, b | 3.08[ | 5.75[ | 3.10[ | 3.03[ | 2.93[ | 3.08[ |
c | 7.86[ | 23.49[ | 22.47[ | 25.94[ | 26.10[ | 7.75[ | |
M2Cr?LDHs | a, b | 3.01[ | 2.99[ | 3.55[ | 3.58[ | 3.57[ | |
c | 22.80[ | 22.80[ | 22.80[ | ||||
M2Mn?LDHs | a, b | 3.05[ | 3.06[ | ||||
c | |||||||
M2Fe?LDHs | a, b | 3.11[ | 5.86[ | 3.13[ | 3.03[ | 3.03[ | |
c | 23.19[ | 23.31[ | 24.92[ | 22.18[ | 23.58[ | ||
M2Ga?LDHs | a, b | 3.09[ | 5.83[ | 3.08[ | 3.06[ | 3.20[ | |
c | 23.42[ | 22.80[ | 22.98[ | 5.20[ | |||
M2Ti?LDHs | a, b | 2.92[ | 3.02[ | 3.07[ | 3.06[ | ||
c | 24.33[ | 21.43[ | 22.16[ | 22.15[ |
LDHs | Cell parameter/? | Mg(II) | Ca(II) | Co(II) | Ni(II) | Cu(II) | Zn(II) |
---|---|---|---|---|---|---|---|
M2Al?LDHs | a, b | 3.08[ | 5.75[ | 3.10[ | 3.03[ | 2.93[ | 3.08[ |
c | 7.86[ | 23.49[ | 22.47[ | 25.94[ | 26.10[ | 7.75[ | |
M2Cr?LDHs | a, b | 3.01[ | 2.99[ | 3.55[ | 3.58[ | 3.57[ | |
c | 22.80[ | 22.80[ | 22.80[ | ||||
M2Mn?LDHs | a, b | 3.05[ | 3.06[ | ||||
c | |||||||
M2Fe?LDHs | a, b | 3.11[ | 5.86[ | 3.13[ | 3.03[ | 3.03[ | |
c | 23.19[ | 23.31[ | 24.92[ | 22.18[ | 23.58[ | ||
M2Ga?LDHs | a, b | 3.09[ | 5.83[ | 3.08[ | 3.06[ | 3.20[ | |
c | 23.42[ | 22.80[ | 22.98[ | 5.20[ | |||
M2Ti?LDHs | a, b | 2.92[ | 3.02[ | 3.07[ | 3.06[ | ||
c | 24.33[ | 21.43[ | 22.16[ | 22.15[ |
LDHs | Exchange?correlation functional | Cutoff energy/eV | k?Points mesh | Unit cell parameter | |||
---|---|---|---|---|---|---|---|
a/? | b/? | c/? | V/?3 | ||||
ZnAl?Cl?LDH | GGA/PBE[ | 408 | 3×3×2 | 3.13 | 3.13 | 23.47 | |
(supercell: | GGA/revPBE?vdW[ | 408 | 3×3×2 | 3.18 | 3.18 | 23.87 | |
Experimental[ | 3.08 | 3.08 | 23.35 | ||||
MgFe?CO3?LDH | GGA/PW91[ | 480 | 2×2×2 | 3.07 | 3.08 | 22.81 | 186.90 |
(supercell: | GGA spin polarized[ | 480 | 2×2×2 | 3.10 | 3.11 | 22.82 | 190.38 |
GGA+U[ | 480 | 2×2×2 | 3.14 | 3.14 | 22.80 | 194.77 | |
Experimental[ | 3.10 | 3.10 | 23.17 | 192.83 |
LDHs | Exchange?correlation functional | Cutoff energy/eV | k?Points mesh | Unit cell parameter | |||
---|---|---|---|---|---|---|---|
a/? | b/? | c/? | V/?3 | ||||
ZnAl?Cl?LDH | GGA/PBE[ | 408 | 3×3×2 | 3.13 | 3.13 | 23.47 | |
(supercell: | GGA/revPBE?vdW[ | 408 | 3×3×2 | 3.18 | 3.18 | 23.87 | |
Experimental[ | 3.08 | 3.08 | 23.35 | ||||
MgFe?CO3?LDH | GGA/PW91[ | 480 | 2×2×2 | 3.07 | 3.08 | 22.81 | 186.90 |
(supercell: | GGA spin polarized[ | 480 | 2×2×2 | 3.10 | 3.11 | 22.82 | 190.38 |
GGA+U[ | 480 | 2×2×2 | 3.14 | 3.14 | 22.80 | 194.77 | |
Experimental[ | 3.10 | 3.10 | 23.17 | 192.83 |
Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV |
---|---|---|---|---|---|---|---|
Co2+ | 3.52[ | Cu2+ | 3.6[ | Mn3+ | 3.54[ | Ti4+ | 6.0[ |
Ni2+ | 3.8[ | Cr3+ | 3.2[ | Fe3+ | 4.3[ |
Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV |
---|---|---|---|---|---|---|---|
Co2+ | 3.52[ | Cu2+ | 3.6[ | Mn3+ | 3.54[ | Ti4+ | 6.0[ |
Ni2+ | 3.8[ | Cr3+ | 3.2[ | Fe3+ | 4.3[ |
Bond length and bond angle | M=Mg2+ | M=Ca2+ | ||
---|---|---|---|---|
6?31G(d) | LANL2DZ/6?31G(d) | 6?31G(d) | LANL2DZ/6?31G(d) | |
M—O(in ?)a | 2.202 | 2.191 | 2.510 | 2.505 |
Al—O3(in ?) | 1.884 | 1.885 | 1.874 | 1.877 |
M1???M2(in ?) | 3.150 | 3.139 | 3.774 | 3.743 |
M???Al(in ?)b | 3.042 | 3.037 | 3.365 | 3.366 |
O3—H(in ?) | 0.968 | 0.968 | 0.968 | 0.969 |
O—M—O(in degree)c | 76.70 | 76.81 | 71.81 | 71.85 |
O—Al—O(in degree)d | 86.56 | 86.36 | 90.43 | 90.34 |
Bond length and bond angle | M=Mg2+ | M=Ca2+ | ||
---|---|---|---|---|
6?31G(d) | LANL2DZ/6?31G(d) | 6?31G(d) | LANL2DZ/6?31G(d) | |
M—O(in ?)a | 2.202 | 2.191 | 2.510 | 2.505 |
Al—O3(in ?) | 1.884 | 1.885 | 1.874 | 1.877 |
M1???M2(in ?) | 3.150 | 3.139 | 3.774 | 3.743 |
M???Al(in ?)b | 3.042 | 3.037 | 3.365 | 3.366 |
O3—H(in ?) | 0.968 | 0.968 | 0.968 | 0.969 |
O—M—O(in degree)c | 76.70 | 76.81 | 71.81 | 71.85 |
O—Al—O(in degree)d | 86.56 | 86.36 | 90.43 | 90.34 |
1 | Cavani F., Trifiro F., Vaccari A., Catal. Today, 1991, 11(2), 173—301 |
2 | Rives V., Layered Double Hydroxides: Present and Future, Nova Science Publishers, New York, 2001, 194—195 |
3 | Duan X., Evans D. G., Layered Double Hydroxides: Structure and Bonding, Springer⁃Verlag, Berlin, 2006, 41(4), 879 |
4 | Bhattacharyya A., Hall D. B., Inorg. Chem., 1992, 31(18), 3869—3870 |
5 | Maritin K. J., Pinnavaia T. J., J. Am. Chem. Soc., 1986, 108(3), 541—542 |
6 | Jones W., Chibwe M., Pillared Layered Structures: Current Trends and Applications, Elsevier, London, 1990, 67—77 |
7 | Dimotakis E. D., Pinnavaia T. J., Inog. Chem., 1990, 29(13), 2393—2394 |
8 | Rives V., Ulibarri M. A., Coord. Chem. Rev., 1999, 181(1), 61—120 |
9 | Chibwe K., Jones W., Chem. Mater., 1989, 1(5), 489—490 |
10 | Giannelis E. P., Nocera D. G., Pinnavaia T. J., Inorg. Chem., 1987, 26(1), 203—205 |
11 | Itaya K., Chang H. C., Uchida I., Inorg. Chem., 1987, 26(4), 624—626 |
12 | Lopez⁃Salinas E., Ono Y., Micropor. Mater., 1993, 1(1), 33—42 |
13 | Kwon T., Pinnavaia T. J., Chem. Mater., 1989, 1(4), 381—383 |
14 | Ulibarri M. A., Labajos F. M., Rives V., Trujllano R., Kagunga W., Jones W., Inorg. Chem., 1994, 33(12), 2592—2599 |
15 | Choy J. H., Kwak S. Y., Park J. S., Jeong Y. J., Portier J., J. Am. Chem. Soc., 1999, 121(6), 1399—1400 |
16 | Theiss F. L., Ayoko G. A., Frost A. R., Appl. Surf. Sci., 2016, 383, 200—213 |
17 | Bookin A. S., Drits V. A., Clays Clay Miner., 1993, 41(5), 551—557 |
18 | Guo L. F., Feng L., Evans D. G., Duan X., Chem. Soc. Rev., 2014, 43(20), 7040—7066 |
19 | Guo L., Wu Y. Y., Duan P., Zhang Z. H., Constr. Build Mater., 2020, 232, 117—256 |
20 | Yue X. J., Li J. X., Zhang T., Qiu F. X., Yang D. Y., Xue M. W., Chem. Eng. J., 2017, 328(15), 117—123 |
21 | Lee J. H., Rhee S. W., Jung D. Y., Chem. Commun., 2003, 9(21), 2740—2741 |
22 | Liu Z. P., Ma R. Z., Osada M., Iyi N., Ebina Y., Takada K., Sasaki T., J. Am. Chem. Soc., 2006, 128(14), 4872—4880 |
23 | Vaccari A., Appl. Clay Sci., 1999, 14(4), 161—198 |
24 | Vaccari A., Catal. Today, 1998, 41(1—3), 53—71 |
25 | Sels B. F., de Vos. D., Buntinx M., Pierard F., Mesmaeker A. K. D., Jacobs P., Nature, 1999, 400(26), 855—857 |
26 | Zhao Y. F., Jia X. D., Waterhouse G. I. N., Wu L. Z., Tung C. H., O’Hare D., Zhang T. R., Adv. Energy Mater., 2016, 6(6), 1501974 |
27 | Yan H., Wei M., Ma J., Li F., Evans D. G., Duan X., J. Phys. Chem. A, 2009, 113(21), 6133—6141 |
28 | Xu S. M., Pan T., Dou Y. B., Yan H., Zhang S. T., Ning F. Y., Shi W. Y., Wei M., J. Phys. Chem. C, 2015, 119(33), 18823— 18834 |
29 | Xu S. M., Yan H., Wei M., J. Phys. Chem. C, 2017, 121(5), 2683—2695 |
30 | Tsukanov A. A., Psakhie S. G., Sci Rep., 2016, 6(1), 19986 |
31 | Mohapatra L., Parida K. M., J. Mater. Chem. A, 2016, 4(28), 10744—10766 |
32 | Peterson R. C., Hill R. J., Gibbss G. V., Can. Mineral., 1979, 17(4), 703—711 |
33 | Sauer J., Chem. Rev., 1989, 89(1), 199—255 |
34 | Liu H. M., Zhao X. J., Zhu Y. Q., Yan H., Phys. Chem. Chem. Phys., 2020, 22, 2521—2529 |
35 | Dias A., Cunha L., Vieira A. C., Mater. Res. Bull., 2011, 46(9), 1346—1351 |
36 | Miyata S., Clays Clay Miner., 1983, 31, 305—311 |
37 | Rousselot I., Taviot⁃Guého C., Leroux F., Léone P., Palvadeau P., Besse J. P., J. Solid State Chem., 2002, 167(1), 137—144 |
38 | Han J., Dou Y., Zhao J., Wei M., Evans D. G., Duan X., Small, 2013, 9, 98—106 |
39 | Caravaggio G. A., Detellier C., Wronski Z., J. Mater. Chem., 2001, 11(3), 912—921 |
40 | Li M. , Li L., Lin S., Chin. Chem. Lett., 2020, 31(6), 1511—1515 |
41 | Aisawa S., Takahashi S., Ogasawara W., Umetsu Y., Narita E., J. Solid State Chem., 2001, 162(1), 52—62 |
42 | Israëli Y., Guého C.T., Besse J.P., Morel J.P., Desrosiers N. M., J. Chem. Soc., Dalton Trans., 2000, 5, 791—796 |
43 | Maeda K., Domen K., Phys. Chem. Lett., 2010, 1(18), 2655—2661 |
44 | Baliarsingh N., Parida K. M., Pradhan G. C., Ind. Eng. Chem. Res., 2014, 53(10), 3834—3841 |
45 | Jiratova K., Kovanda F., Ludvikova J., Balabanova J., Klempa J., Catal. Today, 2016, 277, 61—67 |
46 | Li M., Cheng J. P., Wang J., Liu F., Zhang X. B., Electrochim. Acta, 2016, 206, 108—115 |
47 | Zhang H., Qi R., Liu L. N., Duan X., Chin. J. Chem. Phys., 2003, 16(1), 45—50 |
48 | Al-Jaberi M., Naille S., Dossot M., Ruby C., J. Mol. Struct., 2015, 1102, 253—260 |
49 | Ma R., Liu Z., Takada K., Iyi N., Bando Y., Sasaki T., J. Am. Chem. Soc., 2007, 129(16), 5257—5263 |
50 | Allmann R., Jepsen H., Jhb. Miner. Mh., 1969, 12, 544—551 |
51 | Unal U., J. Sol. State Chem., 2007, 180(9), 2525—2533 |
52 | Zhang J., Dong C., Wang Z., Gao H., Niu J., Peng Z., Zhang Z., Small Methods, 2018, 3(2), 1800286 |
53 | Altuntasoglu O., Unal U., Ida S., Goto M., Matsumoto Y., J. Solid State Chem., 2008, 181(12), 3257—3263 |
54 | Yang J. H., Pei Y. R., Kim S. J., Choi G., Vinu A., Choy J. H., Ind. Eng. Chem. Res., 2008, 57(48), 16264—16271 |
55 | Chowdhury P. R., Bhattacharyya K. G., RSC Adv., 2015, 5(112), 92189—92206 |
56 | Shu X., Zhang W., He J., Gao F., Zhu Y., Solid State Sci., 2006, 8(6), 634—639 |
57 | Yan H., Wei M., Ma J., Evans D. G., Duan X., J. Phys. Chem. A, 2010, 114(27), 7369—7376 |
58 | Costa D. G., Rocha A. B., Souza W. F., Chiaro S. S. X., Leitão A. A., Appl. Clay Sci., 2012, 56, 16—22 |
59 | Moraes P. I. R., Tavares S. R., Vaiss V. S., Leitão A. A., J. Phys. Chem. C, 2016, 120(18), 9965—9974 |
60 | Radha A.V., Kamath P.V., Shivakumara C., J. Phys. Chem. B, 2007, 111(13), 3411—3418 |
61 | Manohara G. V., Prasanna S. V., Kamath P. V., Eur. J. Inorg. Chem., 2011, 16, 2624—2630 |
62 | Rohrbach A., Hafner J., Kresse G., J. Phys. Condens.Mat., 2003, 15(6), 979—996 |
63 | Bajdich M., García-Mota M., Vojvodic A., Nørskov J. K., Bell A. T., J. Am. Chem. Soc., 2013, 135(36), 13521—13530 |
64 | Liao P., Keith J. A., Carter E. A., J. Am. Chem. Soc., 2012, 134(32), 13296—13309 |
65 | Kronawitter C. X., Riplinger C., He X., Zahl P., Carter E. A., Sutter P., Koel B. E., J. Am. Chem. Soc., 2014, 136(38), 13283—13288 |
66 | Mosey N. J., Liao P., Carter E. A., J. Chem. Phys., 2008, 129(1), 014103 |
67 | Kanan D. K., Carter E. A., J. Phys. Chem. C, 2012, 116(18), 9876—9887 |
68 | Zhou F., Cococcioni M., Marianetti C. A., Morgan D., Ceder G., Phys. Rev. B, 2004, 70(23), 235121 |
69 | Yan H., Wei M., Ma J., Duan X., Particuology, 2010, 8, 212—220 |
70 | Hu S., Sun Y., Pu M., Yun R., Xiang X., Sep. Purif. Technol., 2019, 229, 115813 |
71 | Cygan R. T., Liang J. J., Kalinichev A. G., J. Phys. Chem. B, 2004, 108(4), 1255—1266 |
72 | Kim N., Harale A., Tsotsis T. T., Sahimi M., J. Chem. Phys., 2007, 127(22), 224701—224782 |
73 | Pisson J., Morel J. P., Morel-Desrosiers N., Taviot⁃Gueho C., Malfreyt P., J. Phys. Chem. B, 2008, 112(26), 7856—7864 |
74 | Aicken A. M., Bell I. S., Coveney P. V., Jones W., Adv. Mater., 1997, 9(6), 409—500 |
75 | Zhang S. T., Yan H., Wei M., Evans D. G., Duan X., J. Phys. Chem. C, 2012, 116(5), 3421—3431 |
76 | Pan T., Xu S. M., Dou Y. B., Liu X. X., Li Z. Z., Han J. B., Yan H., Wei M., J. Mater. Chem. A, 2015, 3(23), 12350—12356 |
77 | Dou Y. B., Xu S. M., Liu X. X., Han J. B., Yan H., Wei M., Evans D. G., Duan X., Adv. Funct. Mater., 2014, 24(4), 514—521 |
78 | Dou Y. B., Pan T., Xu S. M., Yan H., Han J. B., Wei M., Evans D. G., Duan X., Angew. Chem., 2015, 127(33), 9809—9814 |
79 | Kaassis A. Y. A., Xu S. M., Evans D. G., Williams G. R., Wei M., Duan X., J. Phys. Chem. C, 2015, 119(32), 18729—18740 |
80 | Xu S. M., Zhang S. T., Shi W. Y., Ning F. Y., Fu Y., Yan H., RSC Adv., 2014, 4(88), 47472—47480 |
81 | Lv K., Kang H., Zhang H., Yuan S., Colloid Surface A, 2012, 402, 108—116 |
82 | Wang N., Huang Z., Li X., Li J., Ji S., An Q. F., J. Mater. Chem. A, 2018, 35(6), 17148—17155 |
83 | Qian Y. T., Introduction to Crystal Chemistry, University of Science and Technology of China Press, Hefei, 2005(钱逸泰. 结晶化学导论, 合肥: 中国科学技术大学出版社, 2005) |
84 | Millange F., Walton R. I., Lei L., O’Hare D., Chem. Mater., 2000, 12(7), 1990—1994 |
85 | Vivhi F. M., Alves O. L., J. Mater. Chem., 1997, 7(8), 1631—1634 |
86 | Basile F., Fornasari G., Gazzano M., Vaccari A., Appl. Clay Sci., 2001, 18(1/2), 51—57 |
87 | Basile F., Formasari G., Gazzano M., Vaccari A., Appl. Clay Sci., 2000, 16(3/4), 185—200 |
88 | Yan H., Lu J., Wei M., Ma J., Li H., He J., Evans D. G., Duan X., J. Mol. Struc⁃Theochem., 2008, 866(1—3), 34—45 |
89 | Yan H., Zhao X. J., Zhu Y. Q., Wei M., Evans D. G., Duan X., Struct. Bond., 2019, 182, 89—120 |
90 | Wang X. R., Li Y., Tang L. P., Gan W., Zhou W., Zhao Y. F., Bai D. S., Chinese Chem. Lett., 2017, 28(2), 394—399 |
91 | Ding S., Du X., Yang Y., Wang P., Zhang Z., Hao X., Peng C., Guan G., Phys. Chem. Chem. Phys.,2018, 20(25), 17313—17323 |
92 | Hibino T., Tsunashima A., J. Mater. Sci Lett., 2000, 19, 1403—1405 |
93 | Carvalho H. W. P., Pulcinelli S. H., Santilli C. V., Leroux F., Meneau F., Briois V., Chem. Mater., 2013, 25(14), 2855—2867 |
94 | Zhang S. T., Dou Y., Zhou J., Pu M., Yan H., Wei M., Evans D. G., Duan X., Chem. Phys. Chem., 2016, 17(17), 2754—2766 |
95 | Meng Q. T., Yan H., Mol. Simulat., 2017, 43(13—16), 1338—1347 |
96 | Meng Q. T., Yan H., Sci. China Chem., 2017, 47(4), 493—502(孟庆婷, 鄢红. 中国科学: 化学, 2017, 47(4), 493—502) |
97 | Constantino V. R. L., Pinnavaia T. J., Catal. Lett., 1994, 23(3), 361—367 |
98 | Liu X., Zhao X. F., Zhu Y., Zhang F. Z., Appl. Catal. B, 2013, 140/141, 241—248 |
99 | Pisson J., Morel⁃Desrosiers N., Morel J. P., Roy A., Leroux F., Taviot⁃Guého C., Malfreyt P., Chem. Mater., 2011, 23(6), 1482—1490 |
100 | Li H., Ma J., Evans D. G., Zhou T., Li F., Duan X., Chem. Mater., 2006, 18(18), 4405—4414 |
101 | Kumar P. P., Kalinichev A. G., Kirkpatrick R. J., J. Phys. Chem. C, 2007, 111(36), 13517—13523 |
102 | Petrova N., Mizota T., Stanimirova T., Kirov G., Micropor. Mesopor. Mater., 2003, 63(1—3), 139—145 |
103 | Kumar P. P., Kalinichev A. G., Kirkpatrick R. J., J Phys. Chem. B, 2006, 110(9), 3841—3844 |
104 | Kalinichev A. G., Kumar P. P., Kirkpatrick R. J., Philos. Mag., 2010, 90, 2475—2488 |
105 | Wang J. W., Kalinichev A. G., Kirkpatrick R. J., Hou X. Q., Chem. Mater., 2001, 13(1), 145—150 |
106 | Costa D. G., Rocha A. B., Souza W. F., Chiaro S. S. X., Leitão A. A., J. Phys. Chem. B, 2011, 115(13), 3531—3537 |
107 | Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J., Pure Appl. Chem., 2011, 83(8), 1637—1641 |
108 | Xu Q., Ni Z. M., Yao P., Li Y., J. Mol. Struct., 2010, 977(1—3), 165—169 |
109 | Prasad B. E., Kamath P. V., Vijayamohanan K., Langmuir, 2011, 27(22), 13539—13543 |
110 | Rahman M. T., Kameda T., Miura T., Kumagai S., Yoshioka T., J. Mate. Cycles Waste Manage., 2019, 21(5), 1232—1241 |
111 | Li L., Zhao K. C., Liu P. F., Zhu K., RSC. Adv., 2014, 4(35), 18086—18093 |
112 | Costa D. G., Rocha A. B., Diniz R., Souza W. F., Chiaro S. S. X., Leitão A. A., J. Phys. Chem. C, 2010, 114(33), 14133—14140 |
113 | Nangoi I. M., Tavares S. R., Wypych F., Leitão A. A., Appl. Clay Sci., 2019, 179, 105153 |
114 | Yan D. P., Lu J., Wei M., Ma J., Evans D. G., Duan X., Chem. Commun., 2009, 42, 6358—6360 |
115 | Zhang G., Zhang X., Meng Y., Pan G., Ni Z., Xia S., Chem. Eng. J., 2020, 392, 123684 |
116 | Xia S., Qian M., Zhou X., Meng Y., Xue J., Ni Z., Mol. Catal., 2017, 435, 118—127 |
117 | Xia S., Zhang G., Meng Y., Yang C., Ni Z., Hu J., Appl. Catal. B-Environ., 2020, 278, 119266 |
118 | Wu M. J., Wu J. Z., Zhang J., Chen H., Zhou J. Z., Qian G. R., Xu Z. P., Du Z., Rao Q. L., Catal. Sci. Technol., 2018, 8(5), 1207—1228 |
119 | Li X., Xin M., Guo S., Cai T., Du D., Xing W., Zhao L., Guo W., Xue Q., Yan Z., Electrochim. Acta, 2017, 253, 302—310 |
120 | Lv M., Liu H., J. Solid State Chem., 2015, 227, 232—238 |
[1] | MA Jun, ZHONG Yang, ZHANG Shanshan, HUANG Yijun, ZHANG Lipeng, LI Yaping, SUN Xiaoming, XIA Zhenhai. Design and Theoretical Calculation of Heteroatoms Doped Graphdiyne Towards Efficiently Catalyzing Oxygen Reduction and Evolution Reactions [J]. Chemical Journal of Chinese Universities, 2021, 42(Album-3): 1-10. |
[2] | LI Li, LI Pengfei, WANG Bo. Photocatalytic Application of Covalent Organic Frameworks [J]. Chemical Journal of Chinese Universities, 2020, 41(9): 1917-1932. |
[3] | PENG Shaoqin, LI Ziqin, HUANG Mingtao, LI Yuexiang. Preparation of Zn2In2S5 Photocatalyst by Post-treatment with Hydrochloric Acid for Effective Photocatalytic Hydrogen Evolution† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1677-1683. |
[4] | YU Renpeng, HAN Mei, ZHANG Mengyao, LIU Jianfang, LI Moxia, HU Jiawen. Fractal, Plasmonic Black Gold for Hot Electron Catalysis† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1638-1644. |
[5] | ZHU Yuxin, OUYANG Jie, SONG Yanhua, TANG Sheng, CUI Yanjuan. Preparation of Boron and Iodine co-Doped Carbon Nitride and Its Performance in Photocatalytic Hydrogen Evolution from Water† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1645-1652. |
[6] | SHI Haihan,WU Xiangping,PENG Xinzhe,YU Guojing,DONG Chaoyang,JI Yaoyao,YANG Siwen,CHEN Junlin,WANG Jin,RAN Xueqin,YANG Lei,XIE Linghai,HUANG Wei. An Effective Method of Reducing the Internal Reorganization Energy Based on Windmill-like Grid Composed of Four Carbazoles† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1670-1676. |
[7] | CHENG Rongmin,XU Hong,SHAN Ruiping,ZHAN Conghong. Influential Factors of La-doped Calcium Titanate for Photocatalytic H2 Evolution Under Visible Light [J]. Chemical Journal of Chinese Universities, 2020, 41(6): 1345-1351. |
[8] | WANG Rui,XU Mei,XIE Jiawen,YE Shengying,SONG Xianliang. Effects of Hydrothermal Reaction Conditions on the Structure and Properties of Porous Spherical Bi2WO6 Photocatalyst [J]. Chemical Journal of Chinese Universities, 2020, 41(6): 1320-1328. |
[9] | HE Jinlu, LONG Run, FANG Weihai. A-site Cation Effects on Hot Carrier Relaxation in Perovskites by Nonadiabatic Molecular Dynamics Simulations [J]. Chemical Journal of Chinese Universities, 2020, 41(3): 439-446. |
[10] | ZHAO Peng,ZHANG Jinteng,LIN Yanhong. Excellent Ultraviolet Photocatalytic Efficiency of Mg 2+ Doped ZnO and Analysis on Its Synergetic Effect [J]. Chemical Journal of Chinese Universities, 2020, 41(3): 538-547. |
[11] | CAO Hongyu,MA Zihui,ZHANG Wenqiong,TANG Qian,LI Ruyu,ZHENG Xuefang. Structures and Electronic Absorption Spectra of N/Neo-Confused, Doubly N-Confused and Neo-Confused N-Confused Porphyrin Isomers † [J]. Chemical Journal of Chinese Universities, 2020, 41(2): 341-348. |
[12] | LIU Dongmei,SU Yajing,LI Shanshan,XU Qiwei,LI Xia. Transition Metal Coordination Polymers Constructed by 4-(4-Carboxyphenoxy)isophthalic Acid: Synthesis, Crystal Structure, Fluorescence Sensing and Photocatalysis † [J]. Chemical Journal of Chinese Universities, 2020, 41(2): 253-261. |
[13] | SU Gaoming, SHEN Ruichen, TAN Jie, YUAN Quan. Progress on the Application of Long Persistent Phosphors in Photocatalytic System [J]. Chemical Journal of Chinese Universities, 2020, 41(11): 2404-2414. |
[14] | ZHAO Yanfeng,SUN Xiaolong,HU Shaozheng,WANG Hui,WANG Fei,LI Ping. Effect of Oxygen on Photocatalytic Nitrogen Fixation Performance of N Vacancy-embedded Graphitic Carbon Nitride † [J]. Chemical Journal of Chinese Universities, 2020, 41(1): 132-139. |
[15] | QU Siying, XU Qin. Different Roles of Some Key Residues in the S4 Pocket of Coagulation Factor Xa for Rivaroxaban Binding † [J]. Chemical Journal of Chinese Universities, 2019, 40(9): 1918-1925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||