Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (4): 667.doi: 10.7503/cjcu20180435
• Inorganic Chemistry • Previous Articles Next Articles
WANG Wen1,2, TAO Xiafang2, WU Yunyan2, ZHAO Nan2, CHENG Xiaonong2, YANG Juan2, ZHOU Yazhou2,*()
Received:
2018-06-13
Online:
2019-04-03
Published:
2018-11-19
Contact:
ZHOU Yazhou
E-mail:yazhou@ujs.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Wen,TAO Xiafang,WU Yunyan,ZHAO Nan,CHENG Xiaonong,YANG Juan,ZHOU Yazhou. Fabrication and SERS Performance of “Sandwich” Structured Silver Nanoparticles/Graphene Oxide Substrates†[J]. Chem. J. Chinese Universities, 2019, 40(4): 667.
Fig.1 TEM images of GO(A) and AgNPs(B), UV-Vis spectra of GO(C) and AgNPs(D) and particle size distribution of AgNPs(E) The inset in (C) and (D) are digital photos of GO and AgNPs, respectively.
Fig.2 UV-Vis spectra of AgNPs/GO-N substrates(A), the change of intensities of GO and AgNPs peaks(B) and the AgNPs peak position with self-assemble numbers(C) Inset of (A) is digital photo of AgNPs/GO-10 substrate.
Fig.3 AFM images of GO adsorbed on glass substrate(A, B) and AgNPs/GO-1(C, D), AgNPs/GO-2(E, F), AgNPs/GO-3(G, H), AgNPs/GO-4(I, J) and AgNPs/GO-5(K, L) substrates
Fig.5 UV-Vis spectra(A, C) and AFM images(B, D) of AgNPs/GO substrates prepared using 7.2 mg/mL(A, B) and 1.8 mg/mL(C, D) AgNPs colloidsThe insets of (A) and (C) are the correlation of absorbance of GO and AgNPs with the number of assembly cycles.
Fig.7 SERS spectra of R6G(A, B) and CV(D, E) adsorbed on AgNPs/GO-2(A, D) and AgNPs/GO-3, AgNPs/GO-4 and AgNPs/GO-5(B, E) substrates and the AEF of AgNPs/GO-4 substrate for 10-7 mol/L R6G(C) and 10-8 mol/L CV(F) aqueous solution(A) a. 10-7 mol/L R6G/AgNPs/GO-2; b. 0.4 mol/L R6G aqueous solution. (B) a. 10-7 mol/L R6G/AgNPs/GO-3; b. 10-7 mol/L R6G/AgNPs/GO-4; c. 10-7 mol/L R6G/AgNPs/GO-5. (D) a. 10-8 mol/L CV/AgNPs/GO-2; b. 0.1 mol/L CV aqueous solution. (E) a. 10-8 mol/L CV/AgNPs/GO-3; b. 10-8 mol/L CV/AgNPs/GO-4; c. 10-8 mol/L CV/AgNPs/GO-5.
[1] | Fleischm M., Hendra P. J., Mcquilla A. J., Chem. Phys.Lett>., 1974, 26(2), 163—166 |
[2] | Wang W., Huang Y. F., Liu D. Y., Wang F. F., Tian Z. Q., Zhan D. P., J. Electroanal.Chem., 2016, 779(15), 126—130 |
[3] | Tata A., Gralec B., Proniewicz E., Appl. Surf.Sci.,2018, 435, 256—264 |
[4] | Yan X. F., Xu Y., Tian B. Z., Lei J. Y., Zhang J. L., Wang L. Z., Appl. Catal.B-Environ., 2018, 224, 305—309 |
[5] | Pearson B., Mills A., Tucker M., Gao S., McLandsborough L., He L. L., Food Microbiol., 2018, 72, 89—97 |
[6] | Zhou X., Yao A. H., Zhou T., Wang D. P., Chinese J. Inorg.Chem., 2014, 30(3), 543—549 |
(周鑫, 姚爱华, 周田, 王德平. 无机化学学报, 2014, 30(3), 543—549) | |
[7] | Wang L., Zhang Y., Zhang W., Ren T., Wang R. F., Yang H. F., J. Raman Spectrosc., 2017, 48, 243—250 |
[8] | Cheng C., Yan B., She M. W., ACS Appl. Mater.Interfaces,2010, 2(7), 1824—1828 |
[9] | Du W. X., Yang J., Sang Y. X., Zhang L. L., Zhao N., Xu K., Cheng X. N., Chem. J. Chinese Universities,2017, 38(3), 346—354 |
(杜文修, 杨娟, 桑玉祥, 张莉莉, 赵南, 徐凯, 程晓农. 高等学校化学学报, 2017, 38(3), 346—354 | |
[10] | Xu K., Li Y., Zhao N., Du W. X., Zeng W. W., Gao S., Cheng X. N., Yang J.,Chem. J. Chinese Universities,2016, 37(8), 1476—1484 |
(徐凯, 李毅, 赵南, 杜文修, 曾炜炜, 高帅, 程晓农, 杨娟. 高等学校化学学报, 2017, 38(8), 1476—1484) | |
[11] | Zhao Y. D., Xie Y. Z., Bao Z. Y., J. Phys. Chem.C,2014, 118(22), 11827—11832 |
[12] | Xie L., Ling X., Fang Y., Zhang J., Liu Z. F., J. Am. Chem.Soc., 2009, 131, 9890—9891 |
[13] | Zhang M., Meng J., Wang D., Tang Q., Chen T., Rong S.Z., Liu., J . Q., Wu., Y.C., J. Mater. Chem. C, 2018, 6, 1933—1943 |
[14] | Lu Z., Liu Y., Wang M., Zhang C., Li Z., Huo Y. Y., Li Z., Xu S. C., Man B. Y., Jiang S. Z.,Sensor Actuat B-Chem., 2018, 261>(15), 1—10 |
[15] | Fan W., Lee Y. H., Pedireddy S., Zhang Q., Liu T. X., Ling X. Y.Nanoscale,2014, 6(9), 4843—4851 |
[16] | Zhou Y. Z., Cheng X. N., Yang J., Zhao N., Ma S. B., Li D., Zhong T., RSC Adv., 2013, 3(45), 23236—23241 |
[17] | Zhou Y. Z., Cheng X. N., Du D., Yang J., Zhao N., Ma S. B., Zong T., Lin Y. H., J. Mater. Chem.C,2014, 2(33), 6850—6858 |
[18] | Zhou Y., Huang J., Shi W., Li Y., Wu Y., Liu Q., Zhu J., Zhao N., Zhang L., Yang J., Cheng X., Appl. Surf.Sci, 2018, 457, 1000—1008 |
[19] | Qiu C., Zhou H., Yang H., Chen M. J., Guo Y. J., Sun L. F., J. Phys. Chem.C,2011, 115, 10019—10025 |
[20] | Zhou Y., Yang J., Cheng X., Zhao N., Sun L., Sun H. B., Li D., Carbon,2012, 50, 4343—4350 |
[21] | Zhou Y. Z., Yang J., Sun L., Zhao N., Cheng X. N., Chinese J. Inorg.Chem., 2012, 28(1), 137—142 |
(周亚洲, 杨娟, 孙磊, 赵南, 程晓农. 无机化学学报, 2012, 2828(1),137—142) | |
[22] | Yang J., Zhou Y., Sun L., Zhao N., Zang C., Cheng X., Appl. Surf.Sci.,2012, 258, 5056—5060 |
[23] | Akhavan O., Ghaderi E., Hashemi E., Rahighi R., Nanoscale,2014, 6(24), 14810—148109 |
[24] | Hildebrandt P., Stockburger M., J. Phys.Chem., 1984, 88, 5935—5944 |
[25] | Su Q., Ma X., Dong J., Jiang C., Qian W., ACS Appl. Mater.Interfaces,2011, 3, 1873—1879 |
[26] | Barros E. B., Dresselhaus M. S., Phys.Rev.2014, 90, 035443 |
[27] | Kim Y. K., Han S. W., Min D. H., ACS Appl. Mater.Interface,2012, 4, 6545—6551 |
[1] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[2] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[3] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[4] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[5] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[6] | YANG Zhaohua, CHENG Hongjing, YANG Yi, LIU Hui, DU Feipeng, ZHANG Yunfei. Preparation of Silver-loaded Polyvinyl Alcohol Sponge and Its Interfacial Photothermal Driven Water Evaporation Performance [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220181. |
[7] | CHEN Shaoyun, ZHANG Xingying, LIU Ben, TIAN Du, LI Qi, CHEN Fang, HU Chenglong, CHEN Jian. Controllable Growth of Silver Nanoparticles on TiO2 Tetragonal Prism Nanarrays and Its SERS Effect [J]. Chem. J. Chinese Universities, 2021, 42(8): 2381. |
[8] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[9] | LI Peihong, ZHANG Chunling, DAI Xueyan, SUI Yanlong. Progress of Graphene Oxide/Polymer Composite Hydrogel [J]. Chem. J. Chinese Universities, 2021, 42(6): 1694. |
[10] | MIAO Weijun, WU Feng, WANG Yong, WANG Zongbao. In⁃situ Study of the Epitaxial Crystallization of PCL/RGO at High Shear Rate [J]. Chem. J. Chinese Universities, 2021, 42(3): 910. |
[11] | LI Qi, TIAN Du, CHEN Shaoyun, ZHONG Min, HU Chenglong, CHEN Jian. Controllable Assembling of Silver Nanosheets on Non-woven Fabric Fibers and Its SERS Effect [J]. Chem. J. Chinese Universities, 2021, 42(3): 736. |
[12] | HUANG Dongxue, ZHANG Ying, ZENG Ting, ZHANG Yuanyuan, WAN Qijin, YANG Nianjun. Transition Metal Sulfides Hybridized with Reduced Graphene Oxide for High-Performance Supercapacitors [J]. Chem. J. Chinese Universities, 2021, 42(2): 643. |
[13] | WANG Bowei, MA Rui, WU Fan, LIU Zhihui, LI Lingfeng, ZHANG Xiao, LIU Dingkun, YANG Nan, LI Meihui, YANG Defeng, SUN Qi. Preparation and Characterization of Graphene Oxide-sodium Alginate-chitosan Composite Scaffold [J]. Chem. J. Chinese Universities, 2020, 41(9): 2099. |
[14] | ZHANG Mengyao, YU Renpeng, HAN Mei, LIU Jianfang, LI Moxia, HU Jiawen, TIAN Zhongqun. Salt-Induced Self-assembly of Au Nanoparticles and Sedimentation Enables Plasmonic Black Au film with Broadband Absorption Properties [J]. Chem. J. Chinese Universities, 2020, 41(8): 1903. |
[15] | ZHANG Weiguo, FAN Songhua, WANG Hongzhi, YAO Suwei. Synthesis of Self-assembled α-Fe2O3/Graphene Hydrogel for Supercapacitors with Promising Electrochemical Properties [J]. Chem. J. Chinese Universities, 2020, 41(8): 1850. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||