Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (11): 1999.doi: 10.7503/cjcu20170426
• Physical Chemistry • Previous Articles Next Articles
FENG Xiaolei, QU Zongkai, CHEN Jun, WANG Dengdeng, CHEN Xu*(), YANG Wensheng
Received:
2017-07-04
Online:
2017-11-10
Published:
2017-10-30
Contact:
CHEN Xu
E-mail:chenxu@mail.buct.edu.cn
Supported by:
CLC Number:
TrendMD:
FENG Xiaolei, QU Zongkai, CHEN Jun, WANG Dengdeng, CHEN Xu, YANG Wensheng. NiFe2O4/NiO Nanocomposites as Electrocatalysts for Oxygen Evolution Reaction†[J]. Chem. J. Chinese Universities, 2017, 38(11): 1999.
Catalyst | Onset potential/V (vs. RHE) | Overpotential at 10 mA·cm-2·mV-1 | Slope of Tafel plot/ (mV·dec-1) | Ref. |
---|---|---|---|---|
NiO | 1.62 | 594 | 113 | This work |
NiFe2O4+NiO | 1.57 | 474 | 85 | This work |
NiFe2O4 | 1.55 | 414 | 66 | This work |
NiFe2O4/NiO | 1.51 | 364 | 60 | This work |
NiO/NiFe2O4 | 1.54 | 42 | [ | |
NiFe2O4 | 430 | 42 | [ | |
NiFe2O4 | 377 | 80 | [ | |
NiFe2O4 nanofibers | 1.67 | 98 | [ | |
NiFe2O4 | 1.52 | 381 | 46 | [ |
Table 1 Comparison of the electrocatalytic performance of different catalysts for OER*
Catalyst | Onset potential/V (vs. RHE) | Overpotential at 10 mA·cm-2·mV-1 | Slope of Tafel plot/ (mV·dec-1) | Ref. |
---|---|---|---|---|
NiO | 1.62 | 594 | 113 | This work |
NiFe2O4+NiO | 1.57 | 474 | 85 | This work |
NiFe2O4 | 1.55 | 414 | 66 | This work |
NiFe2O4/NiO | 1.51 | 364 | 60 | This work |
NiO/NiFe2O4 | 1.54 | 42 | [ | |
NiFe2O4 | 430 | 42 | [ | |
NiFe2O4 | 377 | 80 | [ | |
NiFe2O4 nanofibers | 1.67 | 98 | [ | |
NiFe2O4 | 1.52 | 381 | 46 | [ |
[1] | Zhang X. N., Zhong X. W., Yang Z., Song J. P., Lu H. Y., Chem. J. Chinese Universities,2010, 31(6), 1016-1018 |
[2] | Zou X. X., Zhang Y., Chem. Soc. Rev., 2015, 44, 5148-5180 |
[3] | Yeo B. S., Bell A. T., Chem. J. Chinese Universities,2010, 31, 8394-8400 |
[4] | Jiao F., Frei H., Chem. Commun., 2010, 46, 2920-2922 |
[5] | Hu W., Wang Y. Q., Hu X. H., Zhou Y. Q., Chen S. L., J. Mater. Chem., 2012, 22, 6010-6016 |
[6] | Sarder K., Ball S. C., Sharman J. D. B., Thompsett D., Fisher J. M., Smith R. A. P., Chem. Mater., 2012, 24, 4192-4200 |
[7] | Hamdani M., Singh R. N., Chartier P., Int. J. Electrochem. Sci., 2010, 5, 556-577 |
[8] | Rîos E., Chartier P., Gautier J. L., Solid State Sci., 1999, 1, 267-277 |
[9] | Singh R. N., Singh J. P., Lal B., Thomas M. J. K., Bera S., Chem. J. Chinese Universities,2010, 31, 5515-5523 |
[10] | Wang D. D., Chen X., Evans D. G., Yang W. S., Nanoscale,2013, 5, 5312-5315 |
[11] | Chi B., Lin H., Li J. B., Chem. J. Chinese Universities,2010, 31, 4763-4768 |
[12] | Ge X., Liu Y., Goh F. W. T., Hor T. S. A., Zong Y., Xiao P., Zhang Z., Lim S. H., Li B., Wang X., Liu Z., Chem. J. Chinese Universities,2010, 31, 12684-12691 |
[13] | Xu J. J., Xu D., Wang Z. L., Wang H. G., Zhang L. L., Zhang X. B., Angew. Chem. Int. Ed., 2013, 52, 3887-3890 |
[14] | Suntivich J., May K. J., Gasteiger H. A., Goodenough J. B., Shao-Horn Y., Science,2011, 334, 1383-1385 |
[15] | Oscar D. M., Isis L. Y., Marc T. M. K., Federico C. V., ACS Catal., 2015, 5(9), 5380-5387 |
[16] | Du S. C., Ren Z. Y., Wu J., Fu H. G., Chem. J. Chinese Universities,2016, 37(8), 1415-1420 |
(杜世超, 任志宇, 吴君, 付宏刚.高等学校化学学报, 2016, 37(8), 1415-1420) | |
[17] | Suen N. T., Hung S. F., Quan Q., Zhang N., Xu Y. J., Chem. Soc. Rev., 2017, 46, 337-365 |
[18] | Zhao Y., Li F., Zhang R., Evans D. G., Duan X., Chem. Mater., 2002, 14, 4286-4291 |
[19] | Xu S. L., Chen Z. R., Zhang B. W., Yu J. H., Zhang F. Z., Evans D. G., Chem. Eng. J., 2009, 155, 881-885 |
[20] | Li J., Lin Y. Q., Liu X. D., Zhang Q. M., Miao H., Zhang T. Z., Wen B. C., Chem. J. Chinese Universities,2010, 31(1), 49-57 |
[21] | Song F., Hu X. L., Chem. J. Chinese Universities,2010, 31, 4477 |
[22] | Liang H. F., Meng F., Caban-Acevedo M., Li L. S., Forticaux A., Xiu L. C., Wang Z. C., Jin S., Nano Lett., 2015, 15, 1421-1427 |
[23] | Landon J., Demeter E., înoglu N., Keturakis C., Wachs I. E., VasicR., Frenkel A. I., Kitchin J. R., ACS Catal., 2012, 2, 1793-1801 |
[24] | Zhou W. J., Wu X. J., Cao X. H., Huang X., Tan C. L., Tian J., Liu H., Wang J. Y., Zhang H., Energy Environ. Sci., 2013, 6(10), 2921-2924 |
[25] | Zhao X. F., Wang L., Xu X., Lei X. D.,Xu S. L., Zhang F. Z., AIChE J., 2012, 58(2), 573-582 |
[26] | Zhao Y. F., Chen S. Q., Sun B., Su D. W., Huang X. D., Liu H., Yan Y. M., Sun K. N., Wang G. X., Chem. J. Chinese Universities,2010, 31, 7629-7632 |
[27] | Al-Hoshan M. S., Singh J. P., Al-Mayouf A. M., Al-Suhybani A. A., Shaddad M. N., Int. J. Electrochem. Sci., 2012, 7, 4959-4973 |
[28] | Browne M. P., Vasconcelos J. M., Coelho J., O'Brien M., Rovetta A. A., McCarthy E. K., Nolan H., Duesberg G. S.,Nicolosi V., Colavita P. E., Lyons M. E. G., Chem. J. Chinese Universities,2010, 31, 207-216 |
[29] | Li M., Xiong Y. P., Liu X. T., Bo X. J., Zhang Y. F., Han C., Guo L. P., Nanoscale,2015, 7, 8920-8930 |
[30] | Maruthapandian V., Mathankumar M., Saraswathy V., Subramanian B., Muralidharan S., Chem. J. Chinese Universities,2010, 31(15), 13132-13141 |
[1] | ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129. |
[2] | LIU Jiaqi, LI Tianbao. Preparation and Photoelectrochemical Performance of BiVO4/CuBi2O4 Thin Film Photoanodes [J]. Chem. J. Chinese Universities, 2022, 43(4): 20220017. |
[3] | CHEN Wangsong, LUO Lan, LIU Yuguang, ZHOU Hua, KONG Xianggui, LI Zhenhua, DUAN Haohong. Recent Progress in Photoelectrochemical H2 Production Coupled with Biomass-derived Alcohol/aldehyde Oxidation [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210683. |
[4] | SHI Xiaofan, ZHU Jian, BAI Tianyu, FU Zixuan, ZHANG Jijie, BU Xianhe. Research Status and Progress of MOFs with Application in Photoelectrochemical Water-splitting [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210613. |
[5] | TANG Ding, ZHONG Shuiping. Preparation and Photoelectrochemical Performance of Bi1-xFexVO4 Thin Film Photoanodes [J]. Chem. J. Chinese Universities, 2021, 42(8): 2509. |
[6] | LIU Aiqing, XU Wensheng, XU Xiaolei, CHEN Jizhong, AN Lijia. Molecular Dynamics Simulation of Polymer/rod Nanocomposite [J]. Chem. J. Chinese Universities, 2021, 42(3): 875. |
[7] | SHI Jiangwei, MENG Nannan, GUO Yamei, YU Yifu, ZHANG Bin. Recent Advances of Two-dimensional Materials for Electrocatalytic Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2021, 42(2): 492. |
[8] | MA Jun, ZHONG Yang, ZHANG Shanshan, HUANG Yijun, ZHANG Lipeng, LI Yaping, SUN Xiaoming, XIA Zhenhai. Design and Theoretical Calculation of Heteroatoms Doped Graphdiyne Towards Efficiently Catalyzing Oxygen Reduction and Evolution Reactions [J]. Chem. J. Chinese Universities, 2021, 42(2): 624. |
[9] | NING Qiuyang, LI Wancheng. Preparation of Planar C2H5OH Fast Response Gas Sensor [J]. Chem. J. Chinese Universities, 2020, 41(8): 1745. |
[10] | CHANG Jianhong, XU Guojie, LI Hui, FANG Qianrong. Quinone-based Covalent Organic Frameworks for Efficient Oxygen Evolution Reaction† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1609. |
[11] | JIN E,SONG Kaixu,CUI Lili. Preparation and Electrocatalytic Performance of Carbon Material Co-doped by Bimetal Phosphide and Heteroatom [J]. Chem. J. Chinese Universities, 2020, 41(6): 1362. |
[12] | LIU Lu,WU Hanyue,LI Jing,SHE Lan. Tuning Microstructures of Iron-Nickel Alloy Catalysts for Efficient Oxygen Evolution Reaction [J]. Chem. J. Chinese Universities, 2020, 41(5): 1083. |
[13] | DAI Lijun, SUN Zhaoyan. Perspective on the Structure and Dynamics of Polymer Chains in Polymer Nanocomposites [J]. Chem. J. Chinese Universities, 2020, 41(5): 924. |
[14] | JIANG Yuanyuan, LI Boyu, LU Yizhong, WU Tongshun, HAN Dongxue. Oxygen Evolution Reaction Electrocatalytic Performance Analysis of Electroless Plated Ni-Bx [J]. Chem. J. Chinese Universities, 2020, 41(12): 2774. |
[15] | REN Xiangrong,ZHOU Qi. Preparation of Nanoporous Ni and NiO and Their Electrocatalytic Activities for Oxygen Evolution Reaction † [J]. Chem. J. Chinese Universities, 2020, 41(1): 162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||