Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (5): 20220129.doi: 10.7503/cjcu20220129
• Review • Previous Articles Next Articles
ZHANG Hongwei1, CHEN Wen1, ZHAO Meiqi1, MA Chao2(), HAN Yunhu1(
)
Received:
2022-03-03
Online:
2022-05-10
Published:
2022-04-04
Contact:
MA Chao,HAN Yunhu
E-mail:machao2016@tsinghua.edu.cn;iamyhhan@nwpu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry[J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129.
1 | Zang W. J., Kou Z. K., Pennycook S. J., Wang J., Adv. Energy Mater., 2020, 10(9), 1903181 |
2 | Chu S., Majumdar A., Nature, 2012, 488, 294—303 |
3 | Luo J., Im J. H., Mayer M. T., Schreier M., Nazeeruddin M. K., Park N. G., Tilley S. D., Fan H. J., Science, 2014, 345(6204), 1593—1596 |
4 | Zhang Q. Q., Guan J. Q., Adv. Funct. Mater., 2020, 30(31), 2000768 |
5 | Suen N. T., Hung S. F., Quan Q., Zhang N., Xu Y. J., Chen H. M., Chem. Soc. Rev., 2017, 46(2), 337—365 |
6 | Nie Y., Li L., Wei Z., Chem. Soc. Rev., 2015, 44(8), 2168—2201 |
7 | McCrory C. C. L., Jung S., Ferrer I. M., Chatman S. M., Peters J. C., Jaramillo T. F., J. Am. Chem. Soc., 2015, 137(13), 4347—4357 |
8 | Wang Y. J., Zhao N., Fang B., Li H., Bi X. T., Wang H., Chem. Rev., 2015, 115(9), 3433—3467 |
9 | Higgins D., Zamani P., Yu A., Chen Z., Energy Environ. Sci., 2016, 9(2), 357—390 |
10 | Bonaccorso F., Colombo L., Yu G., Stoller M., Tozzini V., Ferrari A. C., Ruoff R. S., Pellegrini V., Science, 2015, 347(6217), 1246501 |
11 | Liu L., Su H., Tang F., Zhao X., Liu Q., Nano Energy, 2018, 46, 110—116 |
12 | Li X., Yang X., Huang Y., Zhang T., Liu B., Adv. Mater., 2019, 31(50), 1902031 |
13 | Liu L., Corma A., Chem. Rev., 2018, 118(10), 4981—5079 |
14 | Peng Y., Lu B., Chen S., Adv. Mater., 2018, 30(48), 1801995 |
15 | Chen Y., Ji S., Zhao S., Chen W., Dong J., Cheong W. C., Shen R., Wen X., Zheng L., Rykov A. I., Cai S., Tang H., Zhuang Z., Chen C., Peng Q., Wang D., Li Y., Nat. Commun., 2018, 9, 5422 |
16 | Zhu C., Shi Q., Feng S., Du D., Lin Y., ACS Energy Lett., 2018, 3(7), 1713—1721 |
17 | Black J. R., Yin Q., Rustad J. R., Casey W. H., J. Am. Chem. Soc., 2007, 129(28), 8690—8691 |
18 | Nam W., Acc. Chem. Res., 2007, 40(7), 522—531 |
19 | Maschmeyer T., Rey F., Sankar G., Thomas J. M., Nature, 1995, 378, 159—162 |
20 | Asakura K., Nagahiro H., Ichikuni N., Iwasawa Y., Appl. Catal. A: Gen., 1999, 188(1/2), 313—324 |
21 | Fu Q., Saltsburg H., Flytzani⁃Stephanopoulos M., Science, 2003, 301(5635), 935—938 |
22 | Hackett S. F. J., Brydson R. M., Gass M. H., Harvey I., Newman A. D., Wilson K., Lee A. F., Angew. Chem. Int. Ed., 2007, 46(45), 8593—8596 |
23 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634—641 |
24 | Yang X. F., Wang A., Qiao B., Li J., Liu J., Zhang T., Acc. Chem. Res., 2013, 46(8), 1740—1748 |
25 | Zhang X., Shi H., Xu B. Q., Angew. Chem. Int. Ed., 2005, 44(43), 7132—7135 |
26 | Lin J., Wang A., Qiao B., Liu X., Yang X., Wang X., Liang J., Li J., Liu J., Zhang T., J. Am. Chem. Soc., 2013, 135(41), 15314—15317 |
27 | Zhang Q. Q., Guan J. Q., Adv. Funct. Mater., 2020, 30(31), 2000768 |
28 | Mikhaylik Y. V., Akridge J. R., J. Electrochem. Soc., 2004, 151, A1969 |
29 | Manthiram A., Fu Y., Su Y. S., Acc. Chem. Res., 2013, 46(5), 1125—1134 |
30 | Corma A.,Concepción P., Boronat M., Sabater M. J., Navas J.,Yacaman M. J., Larios E., Posadas A., Arturo López⁃Quintela M., Buceta D., Mendoza E.,Guilera G., Mayoral A., Nat. Chem., 2013, 5, 775—781 |
31 | Moliner M., Gabay J. E.,Kliewer C. E.,Robert T. Carr R. T.,Guzman J.,Casty G. L.,Serna P.,Corma A., J. Am. Chem. Soc., 2016, 138(48), 15743—15750 |
32 | Peterson E. J., DeLaRiva A. T., Lin S., Johnson R. S., Guo H., Miller J. T., Kwak J. H., Peden C. H. F., Kiefer B., Allard L. F., Ribeiro F. H., Datye A. K., Nat. Commun., 2014, 5, 4885 |
33 | Liu L., Corma A., Chem. Rev., 2018, 118(10), 4981—5079 |
34 | Zhao C. X., Liu J. N., Wang J., Wang C. D., Guo X., Li X. Y., Chen X., Song L., Li B. Q., Zhang Q., Sci. Adv., 2022, 8(11), eabn5091 |
35 | Chen W., Wu B. B., Wang Y. Y., Zhou W., Li Y. Y., Liu T. Y., Xie C., Xu L. T., Du S. Q., Song M. L., Wang D. D., Liu Y. B., Li Y. F., Liu J. L., Zou Y. Q., Chen R., Chen C., Zheng J. Y., Li Y. F., Chen J., Wang S. Y., Energy Environ. Sci., 2021, 14(12), 6428—6440 |
36 | Gan W. G., Zhou D. B., Zhou L., Zhang Z. J., Zhao J., Electrochim. Acta, 2015, 182, 430—436 |
37 | Hwanga B., Ohb E. S., Kima K., Electrochim. Acta, 2016, 216, 484—489 |
38 | Wang J., Ge X., Liu Z., Thia L., Yan Y., Xiao W., Wang X., J. Am. Chem. Soc., 2017, 139(5), 1878—1884 |
39 | Zhang Z., Sun J., Wang F., Dai L., Angew. Chem. Int. Ed., 2018, 57(29), 9038—9043 |
40 | Zhang M., Wang Y. G., Chen W., Dong J., Zheng L., Luo J., Wan J., Tian S., Cheong W. C., Wang D., Li Y.,J. Am. Chem. Soc., 2017, 139(32), 10976—10979 |
41 | Wang J., Gan L., Zhang W., Peng Y., Yu H., Yan Q., Xia X., Wang X., Sci. Adv., 2018, 4(3), eaap7970 |
42 | Li B. Q., Zhao C. X., Chen S. M., Liu J. N., Chen X., Song L., Zhang Q., Adv. Mater., 2019, 31(19), 1900592 |
43 | Li B. Q., Zhang S. Y., Wang B., Xia Z. J., Tang C., Zhang Q., Energy Environ. Sci., 2018, 11(7), 1723—1729 |
44 | Liu W., Zhang L., Yan W., Liu X., Yang X., Miao S., Wang W., Wang A., Zhang T., Chem. Sci., 2016, 7(9), 5758—5764 |
45 | Han Y., Wang Y. G., Chen W., Xu R., Zheng L., Zhang J., Luo J., Shen R. A., Zhu Y., Cheong W. C., Chen C., Peng Q., Wang D., Li Y., J. Am. Chem. Soc., 2017, 139(48), 17269—17272 |
46 | Han X. P., Ling X. F., Wang Y., Ma T. Y., Zhong C., Hu W. B., Deng Y. D., Angew. Chem. Int. Ed., 2019, 58(16), 5359—5364 |
47 | Yang L., Shi L., Wang D., Lv Y. L., Cao D. P., Nano Energy, 2018, 50, 691—698 |
48 | Zhang K., Han X., Hu Z., Zhang X., Tao Z., Chen J., Chem. Soc. Rev., 2015, 44(3), 699—728 |
49 | Yang Y., Mao K. T., Gao S. Q., Huang H., Xia G. L., Lin Z. Y., Jiang P., Wang C. L., Wang H., Chen, Q. W., Adv. Mater., 2018, 30(28), 1801732 |
50 | Shang H. S., Sun W. M., Sui R., Pei J. J., Zheng L. R., Dong J. C., Jiang Z. L., Zhou D. N., Zhuang Z. B., Chen W. X., Zhang J. T., Wang D. S., Li Y. D., Nano Lett., 2020, 20(7), 5443—5450 |
51 | Chen J. Y., Li Hao., Fan Chuang, Meng Q. W., Tang Y. W., Qiu X. Y., Fu G. T., Ma T. Y., Adv. Mater., 2020, 32(30), 2003134 |
52 | Zhang H. W., Zhao M. Q., Liu H. R., Shi S. R., Wang Z. H., Zhang B., Song L., Shang J. Z., Yang Y., Ma C., Zheng L. R., Han Y. H., Huang W., Nano Lett., 2021, 21(5), 2255—2264 |
53 | Daniel M. D., Benjamin J. G., Rob C., Kate M. A., Ana M. F. C., Lisa T., Nikul K., Nathan C., Michael C. N., Matthew W., Andrew I. C., Emily R. D., Alexander J. C., Dave J. A., Adv. Energy Mater., 2020, 10(46), 20022469 |
54 | Kasper T. M., Torben R. J., Etsuo A., Hai⁃wen L., Prog. Nat. Sci., 2017, 27(1), 34—40 |
55 | Jeff G., Thomas F. J., Jacob B., Ib C., Jens K. N., Nat. Mater., 2006, 5, 909—913 |
56 | Gao D. D., Liu R. J., Biskupek J., Kaiser U., Song Y. F., Streb C., Angew. Chem. Int. Ed., 2019, 58(14), 4644—4648 |
57 | Sultan S., Ha M., Kim D. Y.., Tiwari J. N., Myung C. W., Meena A., Shin T. J., Chae K. H., Kim K. S., Nat. Commun., 2019, 10, 5195 |
58 | Cao L. L., Luo Q. Q., Chen J. J., Wang L., Lin Y., Wang H. J., Liu X. K., Shen X. Y., Zhang W., Liu W., Qi Z. M., Jiang Z., Yang J. L., Yao T., Nat. Commun., 2019, 10, 4849 |
59 | Shah K., Dai R. Y., Mateen M., Hassan Z., Zhuang Z. W., Liu C. H., Israr M., Cheong W. C., Hu B. T., Tu R. Y., Zhang C., Chen X., Peng Q., Chen C., Li Y. D., Angew. Chem. Int. Ed., 2021, 61(4), e202114951 |
60 | Lai W. H., Zhang L. F., Hua W. B., Indris S., Yan Z. C., Hu Z., Zhang B. W., Liu Y. N., Wang L., Liu M., Liu R., Wang Y. X., Wang J. Z., Hu Z. P., Liu H. K., Chou S. L., Dou S. X., Angew. Chem. Int. Ed., 2019, 58(34), 11868—11873 |
61 | Naguib M., Mochalin V. N., Barsoum M. W., Gogotsi Y., Adv. Mater., 2014, 26(7), 992—1005 |
62 | Tang X., Zhou D., Li P., Guo X., Sun B., Liu H., Yan K., Gogotsi Y., Wang G. X., Adv. Mater., 2020, 32(4), 1906739 |
63 | Anand R., Nissimagoudar A. S., Umer M., Ha M. R., Zafari M., Umer S., Lee G., Kim K. S., Adv. Energy Mater., 2021, 11(48), 2102388 |
64 | Meng X. Y., Yu L., Ma C., Nan B., Si R., Tu Y. C., Deng J., Deng D. H., Bao X. H., Nano Energy, 2019, 61, 611—616 |
65 | Nguyen D. C., Tran D. T., Doan T. L. L., Kim D. H., Kim N. H., Lee J. H., Adv. Energy Mater., 2020, 10(8), 1903289 |
66 | Doan T. L. L., Nguyen D. C., Prabhakaran S., Kim D. H., Tran D. T., Kim N. H., Lee J. H., Adv. Funct. Mater., 2021, 31(26), 2100233 |
67 | Xu X. P., Xu H. X., Cheng D. J., Nanoscale, 2019, 11(42), 20228—20237 |
68 | Mohajeri A., Dashti N. L., J. Phys. Chem. C, 2019, 123(51), 30972—30980 |
69 | Kulish, V. V., Phys. Chem. Chem. Phys., 2017, 19(18), 11273—11281 |
70 | Ling C. Y., Shi L., Ouyang Y. X., Zeng X. C., Wang J. L., Nano Lett., 2017, 17(8), 5133—5139 |
71 | Kumar R., Sahoo S., Joanni E., Singh R.K., Yadav R.M., Verma R.K., Singh D.P., Tan W. K., P´erez del Pino A., Moshkalev S.A., Matsuda A., Nano Res., 2019, 12, 2655—2694 |
72 | Golberg D., Bando Y., Huang Y., Terao T., Mitome M., Tang C., Zhi C., ACS Nano, 2010, 4(6), 2979—2993 |
73 | Fan G. H., Wang Q., Liu X., Li C. Y., Xu H., Appl. Catal. A: Gen., 2021, 622, 118235 |
74 | Li J. C., Li Y., Wang J. A., Zhang C., Ma H. J., Zhu C. H., Fan D. D., Guo Z. Q., Xu M., Wang Y. Y., Ma H. X., Adv. Funct. Mater., 2022, 2109439 |
75 | Deng Z. J., Zheng X. Q.,Deng M. M.,Li L., Jing Li., Wei Z. D., Chinese J. Catal., 2021, 42(10), 1659—1666 |
76 | Gao G., O’Mullane A. P., Du A., ACS Catal., 2017, 7(1), 494—500 |
77 | Zhao W. P., Wan G., Peng C. L., Sheng H. P., Wen J. G., Chen H. R., ChemSusChem, 2018, 11(19), 3473—3479 |
78 | Li T. F., Liu J. J., Song Y., Wang F., ACS Catal., 2018, 8(9), 8450—8458 |
79 | Zeng Z. P. Gan L. Y., ang H. B., Su X. Z., Gao J. J., Liu W., Matsumoto H., Gong J., Zhang J. M., Cai W. Z., Zhang Z. Y., Yan Y. B., Liu B., Chen P., Nat. Commun., 2021, 12, 4088 |
80 | Hu R. M., Li Y. C., Wang F. H., Shang J. X., Nanoscale, 2020, 12(39), 20413—20424 |
81 | Wang H. F., Tang C., Zhang Q., Adv. Funct. Mater., 2018, 28(46), 1803329 |
82 | Fu J., Cano Z. P., Park M. G., Yu A. P., Fowler M., Chen Z. W., Adv. Mater., 2017, 29(7), 1604685 |
83 | Gu P., Xu Y. X., Zhao Y. F., Liu W., Xue H. G., Pang H., Adv. Mater. Interfaces, 2017, 4(19), 1700589 |
84 | Zhang J. T., Zhang M., Zeng Y., Chen J. S., Qiu L. X., Zhou H., Sun C. J., Yu Y., Zhu C. Z., Zhu Z. H., Small, 2019, 15(24), 1900307 |
85 | Amiinu I. S., Pu Z., Liu X., Owusu K. A., Monestel H. G. R., Boakye F. O., Zhang H., Mu S., Adv. Funct. Mater., 2017, 27(44), 1702300 |
86 | Fu G., Cui Z., Chen Y., Li Y., Tang Y., Goodenough J. B., Adv. Energy Mater., 2017, 7(1), 1601172 |
87 | Zhao M. Q., Liu H. R., Zhang H. W., Chen W., Sun H. Q., Wang Z. H., Zhang B., Song L., Yang Y., Ma C., Han Y. H., Huang W., Energy Environ. Sci., 2021,14(12), 6455—6463 |
88 | Zang W. J., Sumboja A., Ma Y. Y., Zhang H., Wu Y., Wu S. S., Wu H. J., Liu Z. L., Guan C., Wang J., Pennycook S. J., ACS Catal., 2018, 8(10), 8961—8969 |
89 | Chen K., Kim S., Je M., Choi H., Shi Z. C., Vladimir N., Kim K. H., Li L., Nano⁃Micro Lett., 2021, 13, 60 |
90 | Roger I., Shipman M. A., Symes M. D., Nat. Rev. Chem., 2017, 1, 0003 |
91 | Martindale Benjamin C. M., Reisner E., Adv. Energy Mater., 2016, 6(6), 1502095 |
92 | Vij V., Sultan S., Harzandi A. M., Meena A., Tiwari J. N., Lee W. G., Yoon T., Kim K. S., ACS Catal., 2017, 7(10), 7196 |
93 | Li J., Zheng G., Adv. Sci., 2017, 4(3), 1600380 |
94 | Fang M., Dong G., Wei R., Ho Johnny C., Adv. Energy Mater., 2017, 7(23), 1700559 |
95 | Luo F., Hu H., Zhao X., Yang Z. H., Zhang Q., Xu J. X., Kaneko T., Zhu C. Z., Cai W. W., Nano Lett., 2020, 20(3), 2120—2128 |
96 | Li Y. Z., Cao R., Li L. B., Tang X. N., Chu T. L., Huang B. Y., Yuan K., Chen Y. W., Small, 2020, 16(10), 1906735 |
97 | Peng X. Y., Zhao S. Z., Mi Y. Y., Han L. L., Liu X. J., Qi D. F., Sun J. Q., Liu Y. F., Bao H. H., Zhuo L. C., Xin H. L., Luo J., Sun X. M., Small, 2020, 16(33), 2002888 |
98 | Hoa V. H., Tran D. T.,Prabhakaran S., Kim D. H., Hameed N.,Wang H., Kim N. H., Lee J. H., Nano Energy, 2021, 88, 106277 |
99 | Zhao B., Liu J. W., Xu C. Y., Feng R. F., Sui P. F., Wang L., Zhang J. J., Luo J. L., Fu X. Z., Adv. Funct. Mater., 2021, 31(8), 2008812 |
100 | Xu X. J., Guo T., Xia J. Y., Zhao B. L., Su G., Wang H. L., Huang M. H., Toghan A., Chem. Eng. J., 2021, 425, 130514 |
101 | Hausmann J. N., Beltrán⁃Suito R., Mebs S., Hlukhyy V., Fässler T. F., Dau H., Driess M., Menezes P. W., Adv. Mater., 2021, 33(27), 2008823 |
102 | Zheng J., Chen X. L., Zhong X., Li S. Q., Liu T. Z., Zhuang G. L., Li X. N., Deng S. W., Mei D. H., Wang J. G., Adv. Funct. Mater., 2017, 27(46), 1704169 |
103 | Li Y., Zhang J., Liu Y., Qian Q., Li Z., Zhu Y., Zhang G., Sci. Adv., 2020, 6, 4197 |
104 | Liu Y., Zhang J. H., Li Y. P., Qian Q. Z., Li Z. Y., Zhang G. Q., Adv. Funct. Mater., 2021, 31(35), 2103673 |
105 | Gan G. Q., Li X. Y., Fan S. Y., Yin Z. F., Wang L., Chen G. H., Nano Energy, 2021, 80, 105532 |
106 | Hu C. G., Gong L. L., Xiao Y., Yuan Y. F., Bedford N. M., Xia Z. H., Ma L., Wu T. P., Lin Y., Connell J. W., Shahbazian⁃Yassar R., Lu J., Amine K., Dai L. M., Adv. Mater., 2020, 32(16), 1907436 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[3] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[4] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[5] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[6] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[7] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[8] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[9] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[10] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[11] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[12] | WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395. |
[13] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[14] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[15] | XIA Tian, WAN Jiawei, YU Ranbo. Progress of the Structure-property Correlation of Heteroatomic Coordination Structured Carbon-based Single-atom Electrocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||