Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (7): 1609.doi: 10.7503/cjcu2020112
• Physical Chemistry • Previous Articles Next Articles
CHANG Jianhong,XU Guojie,LI Hui,FANG Qianrong*()
Received:
2020-03-02
Online:
2020-07-10
Published:
2020-05-03
Contact:
Qianrong FANG
E-mail:qrfang@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
CHANG Jianhong, XU Guojie, LI Hui, FANG Qianrong. Quinone-based Covalent Organic Frameworks for Efficient Oxygen Evolution Reaction†[J]. Chem. J. Chinese Universities, 2020, 41(7): 1609.
[1] |
Shui J. L., Karan N. K., Balasubramanian M., Li S. Y., Liu D. J., J. Am. Chem. Soc., 2012, 134(40), 16654—16661
URL pmid: 22998563 |
[2] |
Suen N. T., Hung S. F., Quan Q., Zhang N., Xu Y. J., Chen H. M., Chem. Soc. Rev., 2017, 46(2), 337—365
URL pmid: 28083578 |
[3] |
Nocera D. G., Acc. Chem. Res., 2012, 45(5), 767—776
doi: 10.1021/ar2003013 URL |
[4] | Karkas M. D., Verho O., Johnston E. V., Akermark B., Chem. Rev., 2014, 114(24), 11863—12001 |
[5] | Yu X. Y., Feng Y., Guan B., Lou X. W., Paik U., Energy Environ. Sci., 2016, 9(4), 1246—1250 |
[6] |
Reier T., Oezaslan M., Strasser P., ACS Catal., 2012, 2(8), 1765—1772
doi: 10.1021/cs3003098 URL |
[7] | Sardar K., Petrucco E., Hiley C. I., Sharman J. D. B., Wells P. P., Russell A. E., Kashtiban R. J., Sloan J., Walton R. I., Angew. Chem. Int. Ed., 2014, 53(41), 10960—10964 |
[8] |
Bergmann A., Martinez-Moreno E., Teschner D., Chernev P., Gliech M., de Araujo J. F., Reier T., Dau H., Strasser P., Nat. Commun., 2015, 6, 8625
URL pmid: 26456525 |
[9] | Zhou W., Wu X. J., Cao X., Huang X., Tan C., Tian J., Liu H., Wang J., Zhang H., Energy Environ. Sci., 2013, 6(10), 2921—2924 |
[10] | Zou S., Burke M. S., Kast M. G., Fan J., Danilovic N., Boettcher S. W., Chem. Mater., 2015, 27(23), 8011—8020 |
[11] | Tran Ngoc H., Rousse G., Zanna S., Lucas I. T., Xu X., Menguy N., Mougel V., Fontecave M., Angew. Chem. Int. Ed., 2017, 56(17), 4792—4796 |
[12] | Li J., Gao X., Li Z., Wang D. H., Zhu L., Yin C., Wang Y., Li X. B., Liu Z., Zhang J., Tung C. H., Wu L. Z., Adv. Funct. Mater., 2019, 29(16), 1808079 |
[13] | Zhang J., Zhao Z., Xia Z., Dai L., Nat. Nanotechnol., 2015, 10(5), 444—452 |
[14] | Ma T. Y., Ran J., Dai S., Jaroniec M., Qiao S. Z., Angew. Chem. Int. Ed., 2015, 54(15), 4646—4650 |
[15] | Chen S., Zhao L., Ma J., Wang Y., Dai L., Zhang J., Nano Energy, 2019, 60, 536—544 |
[16] |
Zhao Y., Yang N., Yao H., Liu D., Song L., Zhu J., Li S., Gu L., Lin K., Wang D., J. Am. Chem. Soc., 2019, 141(18), 7240—7244
URL pmid: 31002756 |
[17] | Qu K., Zheng Y., Jiao Y., Zhang X., Dai S., Qiao S. Z., Adv. Energy Mater., 2017, 7(9), 1602068 |
[18] | Hu Q., Li G., Li G., Liu X., Zhu B., Chai X., Zhang Q., Liu J., He C., Angew. Chem. Int. Ed., 2019, 58(13), 4318—4322 |
[19] | Pei Z., Li H., Huang Y., Xue Q., Huang Y., Zhu M., Wang Z., Zhi C., Energy Environ. Sci., 2017, 10(3), 742—749 |
[20] | Kim H. T., Shin H., Jeon I. Y., Yousaf M., Baik J., Cheong H. W., Park N., Baek J. B., Kwon T. H., Adv. Mater., 2017, 29(47), 1702747 |
[21] | Zhang Y., Niu H., Zhang X., Pan J., Dong Y., Wang H., Gao Y., RSC Adv., 2017, 7(82), 51831—51837 |
[22] |
Han L., Dong S., Wang E., Adv. Mater., 2016, 28(42), 9266—9291
URL pmid: 27569575 |
[23] | Duan J., Chen S., Jaroniec M., Qiao S. Z., ACS Catal., 2015, 5(9), 5207—5234 |
[24] | Ma T. Y., Dai S., Jaroniec M., Qiao S. Z., Angew. Chem. Int. Ed., 2014, 53(28), 7281—7285 |
[25] |
Cao R., Lee J. S., Liu M., Cho J., Adv. Energy Mater., 2012, 2(7), 816—829
doi: 10.1002/aenm.201200013 URL |
[26] | Li J. C., Hou P. X., Zhao S. Y., Liu C., Tang D. M., Cheng M., Zhang F., Cheng H. M., Energy Environ. Sci., 2016, 9(10), 3079—3084 |
[27] |
Côté A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310(5751), 1166—1170
doi: 10.1126/science.1120411 URL pmid: 16293756 |
[28] |
Xu H. S., Ding S. Y., An W. K., Wu H., Wang W., J. Am. Chem. Soc., 2016, 138(36), 11489—11492
URL pmid: 27585120 |
[29] |
Li Z., Li H., Guan X., Tang J., Yusran Y., Li Z., Xue M., Fang Q., Yan Y., Valtchev V., Qiu S., J. Am. Chem. Soc., 2017, 139(49), 17771—17774
URL pmid: 29179538 |
[30] |
Li H., Chang J., Li S., Guan X., Li D., Li C., Tang L., Xue M., Yan Y., Valtchev V., Qiu S., Fang Q., J. Am. Chem. Soc., 2019, 141(34), 13324—13329
doi: 10.1021/jacs.9b06908 URL pmid: 31398976 |
[31] | Liu X. Z., Guan X. Y., Fang Q. R., Jin Y. R., Chem. J. Chinese Universities, 2019, 40(7), 1341—1344 |
( 刘小舟, 管新宇, 方千荣, 金永日. 高等学校化学学报, 2019, 40(7), 1341—1344) | |
[32] |
Zhang Y., Riduan S. N., Chem. Soc. Rev., 2012, 41(6), 2083—2094
URL pmid: 22134621 |
[33] | Kaur P., Hupp J. T., Nguyen S. T., ACS Catal., 2011, 1(7), 819—835 |
[34] |
Zhou J., Wang B., Chem. Soc. Rev., 2017, 46(22), 6927—6945
URL pmid: 28956880 |
[35] | Alahakoon S. B., Thompson C. M., Occhialini G., Smaldone R. A., ChemSusChem, 2017, 10(18), 2116—2129 |
[36] |
Das P., Mandal S. K ., J. Mater. Chem. A, 2018, 6(33), 16246—16256
doi: 10.1039/C8TA05070H URL |
[37] |
Liu H., Zhang G., Zhou Y., Gao M., Yang F., J. Mater. Chem. A, 2013, 1(44), 13902—13913
doi: 10.1039/c3ta13600k URL |
[38] |
Lin Y., Wu K. H., Lu Q., Gu Q., Zhang L., Zhang B., Su D., Plodinec M., Schlogl R., Heumann S., J. Am. Chem. Soc., 2018, 140(44), 14717—14724
URL pmid: 30359010 |
[39] | Materials Studio ver. 7.0, Accelrys Inc., San Diego, CA |
[40] |
Kandambeth S., Mallick A., Lukose B., Mane M. V., Heine T., Banerjee R., J. Am. Chem. Soc., 2012, 134(48), 19524—19527
URL pmid: 23153356 |
[41] |
Yang H. B., Miao J., Hung S. F., Chen J., Tao H. B., Wang X., Zhang L., Chen R., Gao J., Chen H. M., Dai L., Liu B., Sci. Adv., 2016, 2(4), e1501122
doi: 10.1126/sciadv.1501122 URL pmid: 27152333 |
[42] |
Wen Z., Ci S., Hou Y., Chen J., Angew. Chem. Int. Ed., 2014, 53(25), 6496—6500
doi: 10.1002/anie.201402574 URL |
[43] |
Tang C., Wang H. F., Chen X., Li B. Q., Hou T. Z., Zhang B., Zhang Q., Titirici M. M., Wei F., Adv. Mater., 2016, 28(32), 6845—6851
doi: 10.1002/adma.201601406 URL pmid: 27167616 |
[44] |
Sun T., Wang J., Qiu C., Ling X., Tian B., Chen W., Su C., Adv. Sci., 2018, 5(7), 1800036
doi: 10.1002/advs.v5.7 URL |
[45] |
Balogun M. S., Qiu W., Yang H., Fan W., Huang Y., Fang P., Li G., Ji H., Tong Y., Energy Environ. Sci., 2016, 9(11), 3411—3416
doi: 10.1039/C6EE01930G URL |
[46] |
Chen S., Duan J., Ran J., Qiao S. Z., Adv. Sci., 2015, 2(1/2), 1400015
doi: 10.1002/advs.201400015 URL |
[47] |
Qian Y., Hu Z., Ge X., Yang S., Peng Y., Kang Z., Liu Z., Lee J. Y., Zhao D., Carbon, 2017, 111, 641—650
doi: 10.1016/j.carbon.2016.10.046 URL |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[3] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[4] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[5] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[6] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[7] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[8] | WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395. |
[9] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[10] | XIA Tian, WAN Jiawei, YU Ranbo. Progress of the Structure-property Correlation of Heteroatomic Coordination Structured Carbon-based Single-atom Electrocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220162. |
[11] | ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129. |
[12] | WU Jun, HE Guanchao, FEI Huilong. Self-supported Film Electrodes Decorated with Single Atoms for Energy Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220051. |
[13] | CHEN Changli, MI Wanliang, LI Yujing. Research Progress of Single Atom Catalysts in Electrochemical Hydrogen Cycling [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220065. |
[14] | CHEN Zhaoyang, XUE Yurui, LI Yuliang. Synthesis and Applications of Graphdiyne Based Zerovalent Atomic Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220063. |
[15] | WANG Zumin, MENG Cheng, YU Ranbo. Doping Regulation in Transition Metal Phosphides for Hydrogen Evolution Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||