高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (5): 20240531.doi: 10.7503/cjcu20240531

• 物理化学 • 上一篇    下一篇

基于极小化反应网络方法构建正构烷烃裂解机理

陆彦戎1, 申屠江涛1, 李宜蔚1, 毛业兵2,3(), 李象远1,2()   

  1. 1.四川大学化学工程学院
    2.空天动力燃烧与冷却教育部工程研究中心
    3.机械工程学院, 成都 610065
  • 收稿日期:2024-12-04 出版日期:2025-05-10 发布日期:2025-02-26
  • 通讯作者: 李象远 E-mail:maoyb@scu.edu.cn;xyli@scu.edu.cn
  • 作者简介:毛业兵, 男, 博士, 副研究员, 主要从事燃烧反应动力学方面的研究. E-mail: maoyb@scu.edu.cn
  • 基金资助:
    国家自然科学基金(T2441001);四川省科技计划项目(2022YFSY0009)

Minimized Reaction Network Method for Pyrolysis Mechanisms of n-Alkanes

LU Yanrong1, SHENTU Jiangtao1, LI Yiwei1, MAO Yebing2,3(), LI Xiangyuan1,2()   

  1. 1.College of Chemical Engineering
    2.Engineering Research Center of Combustion and Cooling for Aerospace Power,Ministry of Education
    3.School of Mechanical Engineering,Sichuan University,Chengdu 610065,China
  • Received:2024-12-04 Online:2025-05-10 Published:2025-02-26
  • Contact: LI Xiangyuan E-mail:maoyb@scu.edu.cn;xyli@scu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(T2441001);the Science and Technology Program of Sichuan Province, China(2022YFSY0009)

摘要:

高保真度和低计算成本在燃料的裂解和氧化建模中是极具挑战的任务. 本文基于极小化反应网络(MRN)方法, 构建了包含正庚烷、 正癸烷和正十二烷在内的正构烷烃的裂解动力学机理模型. 该多燃料机理包含32个物种和58个反应, 基于多尺度裂解实验数据和机理进行了验证. 在0.02~5.00 MPa压力范围和 573~1732 K温度范围内, 该机理对正构烷烃的裂解转化率和产气率随温度、 压力和时间变化的预测能力与详细机理相当. 特别是在高压条件下, 正癸烷和正十二烷的子机理在预测燃料转化率以及烯烃、 乙炔等物种浓度分布方面表现出较高的模拟精度, 适用于燃料裂解换热的工程数值模拟. 裂解机理结合氧化反应可形成燃烧机理.

关键词: 极小化反应网络法, 裂解, 正构烷烃, 动力学建模

Abstract:

Simultaneously considering both high fidelity and low computational cost presents a significant challenge in modeling the pyrolysis and oxidation of fuels. In this work, a comprehensive kinetic model for the pyrolysis of n-alkanes covering n-heptane, n-decane, and n-dodecane had been developed based on the minimized reaction network(MRN) method. The total mechanism consists of 32 species and 58 reactions, which are validated against pyrolysis experimental data and mechanisms of multi-sizes in numerical simulations. In the pressure range of 0.02—5.00 MPa and the temperature range of 573—1732 K, the ability of this mechanism to predict the pyrolysis conversion and gas production of n-alkanes with temperature, pressure, and time variations is comparable to that of the detailed mechanism. Especially at high pressures, the sub-mechanisms for n-decane and n-dodecane exhibit higher predictive precision regarding both fuel conversion rates and the profiles of alkenes and acetylene, which makes them suitable for engineering numerical simulations of fuel pyrolysis and heat transfer. The pyrolysis mechanism can also be coupled with oxidation reactions to construct combustion mechanisms.

Key words: Minimized reaction network method, Pyrolysis, n-Alkane, Kinetic modeling

中图分类号: 

TrendMD: