高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (11): 2287-2305.doi: 10.7503/cjcu20200404
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2020-06-30
出版日期:
2020-11-10
发布日期:
2020-11-06
通讯作者:
鄢红
E-mail:yanhong@mail.buct.edu.cn
基金资助:
ZHU Yuquan, ZHAO Xiaojie, ZHONG Yuan, CHEN Ziru, YAN Hong(), DUAN Xue
Received:
2020-06-30
Online:
2020-11-10
Published:
2020-11-06
Contact:
YAN Hong
E-mail:yanhong@mail.buct.edu.cn
Supported by:
摘要:
因主体层板和层间客体具有丰富的可调性, 类水滑石材料(LDHs)在催化、 吸附、 生物医药及光、 电、 磁等方面展现出了广阔的应用前景. 近年来理论研究已成为揭示LDHs微观结构和性质的重要手段, 本文系统综述了LDHs材料主体结构、 客体结构以及主客体相互作用3个方面的理论研究工作进展, 及其在作为光驱动催化剂方面应用的理论研究. 从主体元素构成、 元素比例、 电荷分布、 拓扑结构转变、 能带结构、 态密度、 层间阴离子组成、 离子交换性能、 主客体作用力、 能量性质及光催化性能等方面, 在原子、 电子尺度上揭示了LDHs材料结构-性能之间的构效关系, 为以其为材料平台构筑一系列基于超分子插层结构主客体间相互作用的新型功能材料、 扩展材料的功能性提供了丰富的理论信息和有益指导.
中图分类号:
朱玉荃, 赵晓婕, 钟嫄, 陈子茹, 鄢红, 段雪. 类水滑石材料主客体插层结构的构筑及特性的理论研究[J]. 高等学校化学学报, 2020, 41(11): 2287-2305.
ZHU Yuquan, ZHAO Xiaojie, ZHONG Yuan, CHEN Ziru, YAN Hong, DUAN Xue. Theoretical Study on the Construction and Characteristics of the Host-guest Intercalated Structure of Layered Double Hydroxides[J]. Chemical Journal of Chinese Universities, 2020, 41(11): 2287-2305.
LDHs | Cell parameter/? | Mg(II) | Ca(II) | Co(II) | Ni(II) | Cu(II) | Zn(II) |
---|---|---|---|---|---|---|---|
M2Al?LDHs | a, b | 3.08[ | 5.75[ | 3.10[ | 3.03[ | 2.93[ | 3.08[ |
c | 7.86[ | 23.49[ | 22.47[ | 25.94[ | 26.10[ | 7.75[ | |
M2Cr?LDHs | a, b | 3.01[ | 2.99[ | 3.55[ | 3.58[ | 3.57[ | |
c | 22.80[ | 22.80[ | 22.80[ | ||||
M2Mn?LDHs | a, b | 3.05[ | 3.06[ | ||||
c | |||||||
M2Fe?LDHs | a, b | 3.11[ | 5.86[ | 3.13[ | 3.03[ | 3.03[ | |
c | 23.19[ | 23.31[ | 24.92[ | 22.18[ | 23.58[ | ||
M2Ga?LDHs | a, b | 3.09[ | 5.83[ | 3.08[ | 3.06[ | 3.20[ | |
c | 23.42[ | 22.80[ | 22.98[ | 5.20[ | |||
M2Ti?LDHs | a, b | 2.92[ | 3.02[ | 3.07[ | 3.06[ | ||
c | 24.33[ | 21.43[ | 22.16[ | 22.15[ |
Table 1 Experimental cell parameters of the reported binary MⅡ2M(Ⅲ/Ⅳ)?Cl?LDHs(polytype: 3R)
LDHs | Cell parameter/? | Mg(II) | Ca(II) | Co(II) | Ni(II) | Cu(II) | Zn(II) |
---|---|---|---|---|---|---|---|
M2Al?LDHs | a, b | 3.08[ | 5.75[ | 3.10[ | 3.03[ | 2.93[ | 3.08[ |
c | 7.86[ | 23.49[ | 22.47[ | 25.94[ | 26.10[ | 7.75[ | |
M2Cr?LDHs | a, b | 3.01[ | 2.99[ | 3.55[ | 3.58[ | 3.57[ | |
c | 22.80[ | 22.80[ | 22.80[ | ||||
M2Mn?LDHs | a, b | 3.05[ | 3.06[ | ||||
c | |||||||
M2Fe?LDHs | a, b | 3.11[ | 5.86[ | 3.13[ | 3.03[ | 3.03[ | |
c | 23.19[ | 23.31[ | 24.92[ | 22.18[ | 23.58[ | ||
M2Ga?LDHs | a, b | 3.09[ | 5.83[ | 3.08[ | 3.06[ | 3.20[ | |
c | 23.42[ | 22.80[ | 22.98[ | 5.20[ | |||
M2Ti?LDHs | a, b | 2.92[ | 3.02[ | 3.07[ | 3.06[ | ||
c | 24.33[ | 21.43[ | 22.16[ | 22.15[ |
LDHs | Exchange?correlation functional | Cutoff energy/eV | k?Points mesh | Unit cell parameter | |||
---|---|---|---|---|---|---|---|
a/? | b/? | c/? | V/?3 | ||||
ZnAl?Cl?LDH | GGA/PBE[ | 408 | 3×3×2 | 3.13 | 3.13 | 23.47 | |
(supercell: | GGA/revPBE?vdW[ | 408 | 3×3×2 | 3.18 | 3.18 | 23.87 | |
Experimental[ | 3.08 | 3.08 | 23.35 | ||||
MgFe?CO3?LDH | GGA/PW91[ | 480 | 2×2×2 | 3.07 | 3.08 | 22.81 | 186.90 |
(supercell: | GGA spin polarized[ | 480 | 2×2×2 | 3.10 | 3.11 | 22.82 | 190.38 |
GGA+U[ | 480 | 2×2×2 | 3.14 | 3.14 | 22.80 | 194.77 | |
Experimental[ | 3.10 | 3.10 | 23.17 | 192.83 |
Table 2 Calculated and experimental cell parameters of the optimized LDHs structure[58,59]
LDHs | Exchange?correlation functional | Cutoff energy/eV | k?Points mesh | Unit cell parameter | |||
---|---|---|---|---|---|---|---|
a/? | b/? | c/? | V/?3 | ||||
ZnAl?Cl?LDH | GGA/PBE[ | 408 | 3×3×2 | 3.13 | 3.13 | 23.47 | |
(supercell: | GGA/revPBE?vdW[ | 408 | 3×3×2 | 3.18 | 3.18 | 23.87 | |
Experimental[ | 3.08 | 3.08 | 23.35 | ||||
MgFe?CO3?LDH | GGA/PW91[ | 480 | 2×2×2 | 3.07 | 3.08 | 22.81 | 186.90 |
(supercell: | GGA spin polarized[ | 480 | 2×2×2 | 3.10 | 3.11 | 22.82 | 190.38 |
GGA+U[ | 480 | 2×2×2 | 3.14 | 3.14 | 22.80 | 194.77 | |
Experimental[ | 3.10 | 3.10 | 23.17 | 192.83 |
Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV |
---|---|---|---|---|---|---|---|
Co2+ | 3.52[ | Cu2+ | 3.6[ | Mn3+ | 3.54[ | Ti4+ | 6.0[ |
Ni2+ | 3.8[ | Cr3+ | 3.2[ | Fe3+ | 4.3[ |
Table 3 Ueff of the transition metal cations of LDHs
Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV | Metal cation | Ueff/eV |
---|---|---|---|---|---|---|---|
Co2+ | 3.52[ | Cu2+ | 3.6[ | Mn3+ | 3.54[ | Ti4+ | 6.0[ |
Ni2+ | 3.8[ | Cr3+ | 3.2[ | Fe3+ | 4.3[ |
Bond length and bond angle | M=Mg2+ | M=Ca2+ | ||
---|---|---|---|---|
6?31G(d) | LANL2DZ/6?31G(d) | 6?31G(d) | LANL2DZ/6?31G(d) | |
M—O(in ?)a | 2.202 | 2.191 | 2.510 | 2.505 |
Al—O3(in ?) | 1.884 | 1.885 | 1.874 | 1.877 |
M1???M2(in ?) | 3.150 | 3.139 | 3.774 | 3.743 |
M???Al(in ?)b | 3.042 | 3.037 | 3.365 | 3.366 |
O3—H(in ?) | 0.968 | 0.968 | 0.968 | 0.969 |
O—M—O(in degree)c | 76.70 | 76.81 | 71.81 | 71.85 |
O—Al—O(in degree)d | 86.56 | 86.36 | 90.43 | 90.34 |
Table 4 Optimized Geometries of [M2Al(OH2)9(OH)4]3+[27]
Bond length and bond angle | M=Mg2+ | M=Ca2+ | ||
---|---|---|---|---|
6?31G(d) | LANL2DZ/6?31G(d) | 6?31G(d) | LANL2DZ/6?31G(d) | |
M—O(in ?)a | 2.202 | 2.191 | 2.510 | 2.505 |
Al—O3(in ?) | 1.884 | 1.885 | 1.874 | 1.877 |
M1???M2(in ?) | 3.150 | 3.139 | 3.774 | 3.743 |
M???Al(in ?)b | 3.042 | 3.037 | 3.365 | 3.366 |
O3—H(in ?) | 0.968 | 0.968 | 0.968 | 0.969 |
O—M—O(in degree)c | 76.70 | 76.81 | 71.81 | 71.85 |
O—Al—O(in degree)d | 86.56 | 86.36 | 90.43 | 90.34 |
Fig.3 Optimized structure of three types of [M(OH2)6]n+ clusters[88]Canonical structure(θ=0°—1°); slight distortion(θ=1°—10°); heavy distortion(θ >10°). Copyright 2008, Elsevier.
Fig.4 [MII2Al(OH2)9(OH)4]3+ cluster model(A), the linkage around the three?centered bridging OH group(B), the relationship between zero?point corrected binding energy (ZPE) ΔEb(1 kcal=4.19 kJ) of the clusters and the atomic number of MII(C)[27]Copyright 2009, American Chemical Society.
Fig.5 ZnAl?LDHs clusters with R(Zn2+/Al3+) in the range of 2—6(A) and relationship between the formation energy Ef(1 kcal=4.19 kJ) of the ZnRAl?LDHs(R=3—6) clusters and R(B)[69]Copyright 2010, Elsevier.
Fig.6 Periodic disordered computational model formulated as Mg1-xAlx(OH)2Clx and ordered 3×3×1 supercells (Mg/Al ratio=2) for MgAl?Cl?LDHs with different stacking sequences(3R, 2H and 1H)(A) and lattice energy of the disordered MgAl?Cl?LDHs model stacking in different sequences as a function of R(B)[57]Copyright 2010, American Chemical Society.
Fig.7 Electron density difference of layer in Mg2Al?A?LDHs[34](A) Mg2Al?F?LDHs (B) Mg2Al?Cl?LDHs; (B) Mg2Al?Br?LDHs; (D) Mg2Al?I?LDHs; (E) Mg2Al?OH?LDHs; (F) Mg2Al?NO3?LDHs; (G) Mg2Al?CO3?LDHs; (H) Mg2Al?SO4?LDHs; (I) Mg2Al?PO4?LDHs. The blue region presents the depletion of electronic density, and the red region indicates the increase of electronic density. Copyright 2020, Royal Society of Chemistry.
Fig.8 Simulation of the thermal decomposition process of the MgAl?LDHs(A)[94] and NiAl?LDHs(B)[95]Copyright 2016, John Wiley & Sons, Inc. Copyright 2017, Informa UK Limited.
Fig.9 Top?view of CLDH?1(A) and CLDH?6 (B); side?view of CLDH?1 (C) and CLDH?6(D)[94]The cell used in calculating the values of σ is defined by the blue line, and the blue dashed line represents the imaginary neighbor cell. Copyright 2016, John Wiley & Sons, Inc.
Fig.10 Possible packing styles of interlayer water molecules of α?Ni(OH)2 and Ni/Al?LDHs[100]The snapshots obtained at 50 ps for F-?Ni/Al?LDHs(A), SO42-?Ni/Al?LDHs(B), and SO42-?Ni/Al?LDHs(C) are also given for illustration. 1 ?=0.1 nm. Copyright 2006, American Chemical Society.
Fig.11 Electronic density difference of interlayer species of Mg2Al?A?LDHs interlayered with different anions(A=F-, Cl-, Br-, I-, OH-, NO3-, CO32-, SO42- and PO43-) under the top view, along with the distances between the H atom (H) of water and halogen anions(X)(dX···H) or O atoms within oxygen acid anions(dO···H) (in ?, 1 ?=0.1 nm)[34](A) Mg2Al?F?LDHs; (B) Mg2Al?Cl?LDHs; (B) Mg2Al?Br?LDHs; (D) Mg2Al?I?LDHs; (E) Mg2Al?OH?LDHs; (F) Mg2Al? NO3?LDHs; (G) Mg2Al?CO3?LDHs; (H) Mg2Al?SO4?LDHs; (I) Mg2Al?PO4?LDHs. The blue region presents the depletion of electronic density, and the red region indicates the increase of electronic density. Copyright 2020, Royal Society of Chemistry.
Fig.12 Interlayer distance (d) of MgAl?A?LDHs with different anions and different R(Mg2+/Al3+)(A) and Mg2Al?A?LDHs with different anions(B)[34]Copyright 2020, Royal Society of Chemistry.
Fig.13 Electronic density difference of [Mg?Fe?CO3] (A), [Mg?Fe?NO3] (B), [Mg?Fe?HPO4, Na] (C), and hexahydrated sodium(D) in the interlayer region of [Mg?Fe?HPO4, Na] with the HPO42- anion, using GGA calculation[59]The blue region presents the depletion of electronic density, and the red region indicates the increase of electronic density. Copyright 2016, American Chemical Society.
Fig.14 Band edge placements of MIIMII?LDHs(MII=Mg, Co, Ni, Zn; MIII=Al and Ga)[28]The two dashed red lines(-0.41 and 0.82 V vs. SHE) represent the reduction potential of H2 and the oxidation potential of O2 at pH=7. Copyright 2015, American Chemical Society.
Fig.15 Total density of states (TDOS) and partial density of states (PDOS) for the Mg2Al?A?LDHs intercalated with different interlayer anions[34]The Fermi energy is shown as a dashed vertical line, and has been set as 0 eV. (A) Mg2Al?F?LDHs(4.431 eV); (B) Mg2Al?Cl?LDHs(4.141 eV); (C) Mg2Al?Br?LDHs(3.607 eV); (D) Mg2Al?I?LDHs(3.090 eV); (E) Mg2Al?OH?LDHs(3.208 eV); (F) Mg2Al?NO3?LDHs(2.800 eV); (G) Mg2Al?CO3?LDHs(2.197 eV); (H) Mg2Al?SO4?LDHs(3.505 eV); (I) Mg2Al?PO4?LDHs(1.263 eV). Copyright 2020, Royal Society of Chemistry.
Fig.16 Mulliken electronegativities(χ) and hardness(η) of M(Ⅱ)M(Ⅲ/Ⅳ)?Cl?LDHs as a function of the atomic numbers of divalent cations[89]Copyright 2019, Springer?Nature Switzerland AG.
1 | Cavani F., Trifiro F., Vaccari A., Catal. Today, 1991, 11(2), 173—301 |
2 | Rives V., Layered Double Hydroxides: Present and Future, Nova Science Publishers, New York, 2001, 194—195 |
3 | Duan X., Evans D. G., Layered Double Hydroxides: Structure and Bonding, Springer⁃Verlag, Berlin, 2006, 41(4), 879 |
4 | Bhattacharyya A., Hall D. B., Inorg. Chem., 1992, 31(18), 3869—3870 |
5 | Maritin K. J., Pinnavaia T. J., J. Am. Chem. Soc., 1986, 108(3), 541—542 |
6 | Jones W., Chibwe M., Pillared Layered Structures: Current Trends and Applications, Elsevier, London, 1990, 67—77 |
7 | Dimotakis E. D., Pinnavaia T. J., Inog. Chem., 1990, 29(13), 2393—2394 |
8 | Rives V., Ulibarri M. A., Coord. Chem. Rev., 1999, 181(1), 61—120 |
9 | Chibwe K., Jones W., Chem. Mater., 1989, 1(5), 489—490 |
10 | Giannelis E. P., Nocera D. G., Pinnavaia T. J., Inorg. Chem., 1987, 26(1), 203—205 |
11 | Itaya K., Chang H. C., Uchida I., Inorg. Chem., 1987, 26(4), 624—626 |
12 | Lopez⁃Salinas E., Ono Y., Micropor. Mater., 1993, 1(1), 33—42 |
13 | Kwon T., Pinnavaia T. J., Chem. Mater., 1989, 1(4), 381—383 |
14 | Ulibarri M. A., Labajos F. M., Rives V., Trujllano R., Kagunga W., Jones W., Inorg. Chem., 1994, 33(12), 2592—2599 |
15 | Choy J. H., Kwak S. Y., Park J. S., Jeong Y. J., Portier J., J. Am. Chem. Soc., 1999, 121(6), 1399—1400 |
16 | Theiss F. L., Ayoko G. A., Frost A. R., Appl. Surf. Sci., 2016, 383, 200—213 |
17 | Bookin A. S., Drits V. A., Clays Clay Miner., 1993, 41(5), 551—557 |
18 | Guo L. F., Feng L., Evans D. G., Duan X., Chem. Soc. Rev., 2014, 43(20), 7040—7066 |
19 | Guo L., Wu Y. Y., Duan P., Zhang Z. H., Constr. Build Mater., 2020, 232, 117—256 |
20 | Yue X. J., Li J. X., Zhang T., Qiu F. X., Yang D. Y., Xue M. W., Chem. Eng. J., 2017, 328(15), 117—123 |
21 | Lee J. H., Rhee S. W., Jung D. Y., Chem. Commun., 2003, 9(21), 2740—2741 |
22 | Liu Z. P., Ma R. Z., Osada M., Iyi N., Ebina Y., Takada K., Sasaki T., J. Am. Chem. Soc., 2006, 128(14), 4872—4880 |
23 | Vaccari A., Appl. Clay Sci., 1999, 14(4), 161—198 |
24 | Vaccari A., Catal. Today, 1998, 41(1—3), 53—71 |
25 | Sels B. F., de Vos. D., Buntinx M., Pierard F., Mesmaeker A. K. D., Jacobs P., Nature, 1999, 400(26), 855—857 |
26 | Zhao Y. F., Jia X. D., Waterhouse G. I. N., Wu L. Z., Tung C. H., O’Hare D., Zhang T. R., Adv. Energy Mater., 2016, 6(6), 1501974 |
27 | Yan H., Wei M., Ma J., Li F., Evans D. G., Duan X., J. Phys. Chem. A, 2009, 113(21), 6133—6141 |
28 | Xu S. M., Pan T., Dou Y. B., Yan H., Zhang S. T., Ning F. Y., Shi W. Y., Wei M., J. Phys. Chem. C, 2015, 119(33), 18823— 18834 |
29 | Xu S. M., Yan H., Wei M., J. Phys. Chem. C, 2017, 121(5), 2683—2695 |
30 | Tsukanov A. A., Psakhie S. G., Sci Rep., 2016, 6(1), 19986 |
31 | Mohapatra L., Parida K. M., J. Mater. Chem. A, 2016, 4(28), 10744—10766 |
32 | Peterson R. C., Hill R. J., Gibbss G. V., Can. Mineral., 1979, 17(4), 703—711 |
33 | Sauer J., Chem. Rev., 1989, 89(1), 199—255 |
34 | Liu H. M., Zhao X. J., Zhu Y. Q., Yan H., Phys. Chem. Chem. Phys., 2020, 22, 2521—2529 |
35 | Dias A., Cunha L., Vieira A. C., Mater. Res. Bull., 2011, 46(9), 1346—1351 |
36 | Miyata S., Clays Clay Miner., 1983, 31, 305—311 |
37 | Rousselot I., Taviot⁃Guého C., Leroux F., Léone P., Palvadeau P., Besse J. P., J. Solid State Chem., 2002, 167(1), 137—144 |
38 | Han J., Dou Y., Zhao J., Wei M., Evans D. G., Duan X., Small, 2013, 9, 98—106 |
39 | Caravaggio G. A., Detellier C., Wronski Z., J. Mater. Chem., 2001, 11(3), 912—921 |
40 | Li M. , Li L., Lin S., Chin. Chem. Lett., 2020, 31(6), 1511—1515 |
41 | Aisawa S., Takahashi S., Ogasawara W., Umetsu Y., Narita E., J. Solid State Chem., 2001, 162(1), 52—62 |
42 | Israëli Y., Guého C.T., Besse J.P., Morel J.P., Desrosiers N. M., J. Chem. Soc., Dalton Trans., 2000, 5, 791—796 |
43 | Maeda K., Domen K., Phys. Chem. Lett., 2010, 1(18), 2655—2661 |
44 | Baliarsingh N., Parida K. M., Pradhan G. C., Ind. Eng. Chem. Res., 2014, 53(10), 3834—3841 |
45 | Jiratova K., Kovanda F., Ludvikova J., Balabanova J., Klempa J., Catal. Today, 2016, 277, 61—67 |
46 | Li M., Cheng J. P., Wang J., Liu F., Zhang X. B., Electrochim. Acta, 2016, 206, 108—115 |
47 | Zhang H., Qi R., Liu L. N., Duan X., Chin. J. Chem. Phys., 2003, 16(1), 45—50 |
48 | Al-Jaberi M., Naille S., Dossot M., Ruby C., J. Mol. Struct., 2015, 1102, 253—260 |
49 | Ma R., Liu Z., Takada K., Iyi N., Bando Y., Sasaki T., J. Am. Chem. Soc., 2007, 129(16), 5257—5263 |
50 | Allmann R., Jepsen H., Jhb. Miner. Mh., 1969, 12, 544—551 |
51 | Unal U., J. Sol. State Chem., 2007, 180(9), 2525—2533 |
52 | Zhang J., Dong C., Wang Z., Gao H., Niu J., Peng Z., Zhang Z., Small Methods, 2018, 3(2), 1800286 |
53 | Altuntasoglu O., Unal U., Ida S., Goto M., Matsumoto Y., J. Solid State Chem., 2008, 181(12), 3257—3263 |
54 | Yang J. H., Pei Y. R., Kim S. J., Choi G., Vinu A., Choy J. H., Ind. Eng. Chem. Res., 2008, 57(48), 16264—16271 |
55 | Chowdhury P. R., Bhattacharyya K. G., RSC Adv., 2015, 5(112), 92189—92206 |
56 | Shu X., Zhang W., He J., Gao F., Zhu Y., Solid State Sci., 2006, 8(6), 634—639 |
57 | Yan H., Wei M., Ma J., Evans D. G., Duan X., J. Phys. Chem. A, 2010, 114(27), 7369—7376 |
58 | Costa D. G., Rocha A. B., Souza W. F., Chiaro S. S. X., Leitão A. A., Appl. Clay Sci., 2012, 56, 16—22 |
59 | Moraes P. I. R., Tavares S. R., Vaiss V. S., Leitão A. A., J. Phys. Chem. C, 2016, 120(18), 9965—9974 |
60 | Radha A.V., Kamath P.V., Shivakumara C., J. Phys. Chem. B, 2007, 111(13), 3411—3418 |
61 | Manohara G. V., Prasanna S. V., Kamath P. V., Eur. J. Inorg. Chem., 2011, 16, 2624—2630 |
62 | Rohrbach A., Hafner J., Kresse G., J. Phys. Condens.Mat., 2003, 15(6), 979—996 |
63 | Bajdich M., García-Mota M., Vojvodic A., Nørskov J. K., Bell A. T., J. Am. Chem. Soc., 2013, 135(36), 13521—13530 |
64 | Liao P., Keith J. A., Carter E. A., J. Am. Chem. Soc., 2012, 134(32), 13296—13309 |
65 | Kronawitter C. X., Riplinger C., He X., Zahl P., Carter E. A., Sutter P., Koel B. E., J. Am. Chem. Soc., 2014, 136(38), 13283—13288 |
66 | Mosey N. J., Liao P., Carter E. A., J. Chem. Phys., 2008, 129(1), 014103 |
67 | Kanan D. K., Carter E. A., J. Phys. Chem. C, 2012, 116(18), 9876—9887 |
68 | Zhou F., Cococcioni M., Marianetti C. A., Morgan D., Ceder G., Phys. Rev. B, 2004, 70(23), 235121 |
69 | Yan H., Wei M., Ma J., Duan X., Particuology, 2010, 8, 212—220 |
70 | Hu S., Sun Y., Pu M., Yun R., Xiang X., Sep. Purif. Technol., 2019, 229, 115813 |
71 | Cygan R. T., Liang J. J., Kalinichev A. G., J. Phys. Chem. B, 2004, 108(4), 1255—1266 |
72 | Kim N., Harale A., Tsotsis T. T., Sahimi M., J. Chem. Phys., 2007, 127(22), 224701—224782 |
73 | Pisson J., Morel J. P., Morel-Desrosiers N., Taviot⁃Gueho C., Malfreyt P., J. Phys. Chem. B, 2008, 112(26), 7856—7864 |
74 | Aicken A. M., Bell I. S., Coveney P. V., Jones W., Adv. Mater., 1997, 9(6), 409—500 |
75 | Zhang S. T., Yan H., Wei M., Evans D. G., Duan X., J. Phys. Chem. C, 2012, 116(5), 3421—3431 |
76 | Pan T., Xu S. M., Dou Y. B., Liu X. X., Li Z. Z., Han J. B., Yan H., Wei M., J. Mater. Chem. A, 2015, 3(23), 12350—12356 |
77 | Dou Y. B., Xu S. M., Liu X. X., Han J. B., Yan H., Wei M., Evans D. G., Duan X., Adv. Funct. Mater., 2014, 24(4), 514—521 |
78 | Dou Y. B., Pan T., Xu S. M., Yan H., Han J. B., Wei M., Evans D. G., Duan X., Angew. Chem., 2015, 127(33), 9809—9814 |
79 | Kaassis A. Y. A., Xu S. M., Evans D. G., Williams G. R., Wei M., Duan X., J. Phys. Chem. C, 2015, 119(32), 18729—18740 |
80 | Xu S. M., Zhang S. T., Shi W. Y., Ning F. Y., Fu Y., Yan H., RSC Adv., 2014, 4(88), 47472—47480 |
81 | Lv K., Kang H., Zhang H., Yuan S., Colloid Surface A, 2012, 402, 108—116 |
82 | Wang N., Huang Z., Li X., Li J., Ji S., An Q. F., J. Mater. Chem. A, 2018, 35(6), 17148—17155 |
83 | Qian Y. T., Introduction to Crystal Chemistry, University of Science and Technology of China Press, Hefei, 2005(钱逸泰. 结晶化学导论, 合肥: 中国科学技术大学出版社, 2005) |
84 | Millange F., Walton R. I., Lei L., O’Hare D., Chem. Mater., 2000, 12(7), 1990—1994 |
85 | Vivhi F. M., Alves O. L., J. Mater. Chem., 1997, 7(8), 1631—1634 |
86 | Basile F., Fornasari G., Gazzano M., Vaccari A., Appl. Clay Sci., 2001, 18(1/2), 51—57 |
87 | Basile F., Formasari G., Gazzano M., Vaccari A., Appl. Clay Sci., 2000, 16(3/4), 185—200 |
88 | Yan H., Lu J., Wei M., Ma J., Li H., He J., Evans D. G., Duan X., J. Mol. Struc⁃Theochem., 2008, 866(1—3), 34—45 |
89 | Yan H., Zhao X. J., Zhu Y. Q., Wei M., Evans D. G., Duan X., Struct. Bond., 2019, 182, 89—120 |
90 | Wang X. R., Li Y., Tang L. P., Gan W., Zhou W., Zhao Y. F., Bai D. S., Chinese Chem. Lett., 2017, 28(2), 394—399 |
91 | Ding S., Du X., Yang Y., Wang P., Zhang Z., Hao X., Peng C., Guan G., Phys. Chem. Chem. Phys.,2018, 20(25), 17313—17323 |
92 | Hibino T., Tsunashima A., J. Mater. Sci Lett., 2000, 19, 1403—1405 |
93 | Carvalho H. W. P., Pulcinelli S. H., Santilli C. V., Leroux F., Meneau F., Briois V., Chem. Mater., 2013, 25(14), 2855—2867 |
94 | Zhang S. T., Dou Y., Zhou J., Pu M., Yan H., Wei M., Evans D. G., Duan X., Chem. Phys. Chem., 2016, 17(17), 2754—2766 |
95 | Meng Q. T., Yan H., Mol. Simulat., 2017, 43(13—16), 1338—1347 |
96 | Meng Q. T., Yan H., Sci. China Chem., 2017, 47(4), 493—502(孟庆婷, 鄢红. 中国科学: 化学, 2017, 47(4), 493—502) |
97 | Constantino V. R. L., Pinnavaia T. J., Catal. Lett., 1994, 23(3), 361—367 |
98 | Liu X., Zhao X. F., Zhu Y., Zhang F. Z., Appl. Catal. B, 2013, 140/141, 241—248 |
99 | Pisson J., Morel⁃Desrosiers N., Morel J. P., Roy A., Leroux F., Taviot⁃Guého C., Malfreyt P., Chem. Mater., 2011, 23(6), 1482—1490 |
100 | Li H., Ma J., Evans D. G., Zhou T., Li F., Duan X., Chem. Mater., 2006, 18(18), 4405—4414 |
101 | Kumar P. P., Kalinichev A. G., Kirkpatrick R. J., J. Phys. Chem. C, 2007, 111(36), 13517—13523 |
102 | Petrova N., Mizota T., Stanimirova T., Kirov G., Micropor. Mesopor. Mater., 2003, 63(1—3), 139—145 |
103 | Kumar P. P., Kalinichev A. G., Kirkpatrick R. J., J Phys. Chem. B, 2006, 110(9), 3841—3844 |
104 | Kalinichev A. G., Kumar P. P., Kirkpatrick R. J., Philos. Mag., 2010, 90, 2475—2488 |
105 | Wang J. W., Kalinichev A. G., Kirkpatrick R. J., Hou X. Q., Chem. Mater., 2001, 13(1), 145—150 |
106 | Costa D. G., Rocha A. B., Souza W. F., Chiaro S. S. X., Leitão A. A., J. Phys. Chem. B, 2011, 115(13), 3531—3537 |
107 | Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J., Pure Appl. Chem., 2011, 83(8), 1637—1641 |
108 | Xu Q., Ni Z. M., Yao P., Li Y., J. Mol. Struct., 2010, 977(1—3), 165—169 |
109 | Prasad B. E., Kamath P. V., Vijayamohanan K., Langmuir, 2011, 27(22), 13539—13543 |
110 | Rahman M. T., Kameda T., Miura T., Kumagai S., Yoshioka T., J. Mate. Cycles Waste Manage., 2019, 21(5), 1232—1241 |
111 | Li L., Zhao K. C., Liu P. F., Zhu K., RSC. Adv., 2014, 4(35), 18086—18093 |
112 | Costa D. G., Rocha A. B., Diniz R., Souza W. F., Chiaro S. S. X., Leitão A. A., J. Phys. Chem. C, 2010, 114(33), 14133—14140 |
113 | Nangoi I. M., Tavares S. R., Wypych F., Leitão A. A., Appl. Clay Sci., 2019, 179, 105153 |
114 | Yan D. P., Lu J., Wei M., Ma J., Evans D. G., Duan X., Chem. Commun., 2009, 42, 6358—6360 |
115 | Zhang G., Zhang X., Meng Y., Pan G., Ni Z., Xia S., Chem. Eng. J., 2020, 392, 123684 |
116 | Xia S., Qian M., Zhou X., Meng Y., Xue J., Ni Z., Mol. Catal., 2017, 435, 118—127 |
117 | Xia S., Zhang G., Meng Y., Yang C., Ni Z., Hu J., Appl. Catal. B-Environ., 2020, 278, 119266 |
118 | Wu M. J., Wu J. Z., Zhang J., Chen H., Zhou J. Z., Qian G. R., Xu Z. P., Du Z., Rao Q. L., Catal. Sci. Technol., 2018, 8(5), 1207—1228 |
119 | Li X., Xin M., Guo S., Cai T., Du D., Xing W., Zhao L., Guo W., Xue Q., Yan Z., Electrochim. Acta, 2017, 253, 302—310 |
120 | Lv M., Liu H., J. Solid State Chem., 2015, 227, 232—238 |
[1] | 马骏, 钟洋, 张珊珊, 黄仪珺, 张利鹏, 李亚平, 孙晓明, 夏振海. 高效催化氧还原及氧析出反应的掺杂石墨炔的设计与理论计算[J]. 高等学校化学学报, 2021, 42(Album-3): 1-10. |
[2] | 李丽, 李鹏飞, 王博. 共价有机框架材料在光催化领域中的应用[J]. 高等学校化学学报, 2020, 41(9): 1917-1932. |
[3] | 李肖乾, 张华, 路海健, 刘畅, 刘庆龙, 马夏禹, 方媛萍, 梁大鹏. 内部萃取电喷雾电离质谱对二氧化钛纳米线阵列光催化降解罗丹明B反应机理的研究[J]. 高等学校化学学报, 2020, 41(9): 2003-2010. |
[4] | 祝玉鑫, 欧阳杰, 宋艳华, 唐盛, 崔言娟. 硼碘共掺杂氮化碳的制备及光解水制氢性能[J]. 高等学校化学学报, 2020, 41(7): 1645-1652. |
[5] | 王非凡, 王松博, 姚柯奕, 张蕾, 杜威, 程鹏高, 张建平, 唐娜. 量子点自修饰TiO2p-n同质结的构建及光催化性能[J]. 高等学校化学学报, 2020, 41(7): 1615-1624. |
[6] | 史海涵,吴香萍,彭辛哲,余国静,董朝阳,纪瑶瑶,杨思文,陈俊林,王锦,冉雪芹,杨磊,解令海,黄维. 一种基于风车格结构的有效降低内重组能的咔唑类格子化分子[J]. 高等学校化学学报, 2020, 41(7): 1670-1676. |
[7] | 徐文艺,冯乙巳. 2,3-丁二酮介导的CF3SO2Na与烯烃的氧化三氟甲基化反应[J]. 高等学校化学学报, 2020, 41(7): 1567-1574. |
[8] | 彭绍琴, 李紫琴, 黄铭涛, 李越湘. 盐酸后处理制备高效制氢光催化剂Zn2In2S5[J]. 高等学校化学学报, 2020, 41(7): 1677-1683. |
[9] | 余仁鹏, 韩梅, 张梦瑶, 刘建芳, 李末霞, 胡家文. 分形等离激元黑金的热电子催化性能[J]. 高等学校化学学报, 2020, 41(7): 1638-1644. |
[10] | 王蕊,徐梅,谢家文,叶盛英,宋贤良. 水热反应条件对多孔球状Bi2WO6光催化剂结构及性能的影响[J]. 高等学校化学学报, 2020, 41(6): 1320-1328. |
[11] | 成荣敏,徐虹,单瑞平,詹从红. La掺杂钛酸钙光催化剂在可见光下分解水制氢的影响因素[J]. 高等学校化学学报, 2020, 41(6): 1345-1351. |
[12] | 曹锰, 柳阳, 张尚玺, 王振希, 徐胜. 壳聚糖钴配合物的合成及光催化产氢性能[J]. 高等学校化学学报, 2020, 41(4): 735-741. |
[13] | 罗威, 梁佑才, 胡志诚, 唐浩然, 刘孝诚, 邢晔彤, 黄飞. 新型亲水性共轭聚合物的制备及光催化制氢性能[J]. 高等学校化学学报, 2020, 41(3): 456-464. |
[14] | 贺进禄, 龙闰, 方维海. 非绝热分子动力学模拟A位阳离子对钙钛矿热载流子弛豫的影响[J]. 高等学校化学学报, 2020, 41(3): 439-446. |
[15] | 赵鹏,张晋腾,林艳红. Mg-ZnO复合物的紫外光催化效率及协同作用研究[J]. 高等学校化学学报, 2020, 41(3): 538-547. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||