高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (7): 1645.doi: 10.7503/cjcu20200084

• 物理化学 • 上一篇    下一篇

硼碘共掺杂氮化碳的制备及光解水制氢性能

祝玉鑫,欧阳杰,宋艳华,唐盛,崔言娟*()   

  1. 江苏科技大学环境与化学工程学院, 镇江 212008
  • 收稿日期:2020-02-19 出版日期:2020-07-10 发布日期:2020-04-20
  • 通讯作者: 崔言娟 E-mail:yjcui@just.edu.cn
  • 基金资助:
    国家自然科学基金(21503096)

Preparation of Boron and Iodine co-Doped Carbon Nitride and Its Performance in Photocatalytic Hydrogen Evolution from Water

ZHU Yuxin,OUYANG Jie,SONG Yanhua,TANG Sheng,CUI Yanjuan*()   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212008, China
  • Received:2020-02-19 Online:2020-07-10 Published:2020-04-20
  • Contact: Yanjuan CUI E-mail:yjcui@just.edu.cn
  • Supported by:
    † National Natural Science Foundation of China(21503096)

摘要:

以三聚氰胺为原料, 氧化硼为硼源, 碘化铵为碘源, 采用一步煅烧法合成了硼、 碘共掺杂氮化碳催化剂(CNBI). 利用X射线衍射仪、 透射电子显微镜、 傅里叶变换红外光谱仪、 X射线光电子能谱仪、 紫外-可见光分光光度计及电化学工作站等对样品进行表征和分析, 利用可见光照射下光解水制氢反应来评价其催化性能. 研究结果表明, B, I元素均匀分散掺杂入氮化碳共轭骨架形成B, I共掺杂CN半导体材料. 相比于未掺杂材料CN, B, I共掺杂CN样品禁带宽度略微降低, 光吸收能力增强, 光生电子-空穴对的分离效率提高, 这主要归因于B, I元素的电负性差异有助于氮化碳光生电子和空穴的重新分散. 共掺杂样品CNBI(0.1, 0.3)具有最佳光解水制氢性能, 在可见光照射下产氢速率达104.3 μmol/h, 分别是纯CN(22.74 μmol/h)的4.6倍, B掺杂氮化碳CNB(0.1)(51.92 μmol/h) 的2.0倍及碘掺杂氮化碳CNI(0.3)(33.37 μmol/h) 的3.1倍.

关键词: 氮化碳, 光催化, 硼, 碘共掺杂, 制氢

Abstract:

Boron and iodine co-doped carbon nitride(CNBI) catalysts were synthesized using boron oxide as the boron source, ammonium iodide as the iodine source and melamine as the raw-material by one-step calcination method. The samples were characterized and analyzed using X-ray powder diffractometer(XRD), transmission electron microscope(TEM), Fourier transform infrared spectrometer(FTIR), X-ray photoelectron spectrometer(XPS), ultraviolet-visible(UV-Vis) spectrophotometer and electrochemical workstation. The performance of the catalysts was tested by hydrogen production from water under visible light irradiation. The results indicated that the B and I elements were uniformly dispersed and doped into the CN conjugate skeleton to form B, I co-doped CNBI semiconductor materials. Compared with undoped CN, the band gap of co-doped catalysts was slightly reduced, the light absorption range was expanded. The separation efficiency of photo-generated electron-hole pairs was improved, mainly due to the difference in electronegativity of the B and I elements, which helps redispersed the photo-generated carriers of CN. The CNBI(0.1,0.3) sample had the best photocatalytic hydrogen production performance, and hydrogen production rate was 104.30 μmol/h under visible light irradiation, which is 4.6 times that of pure CN(22.74 μmol/h), 2.0 times of CNB(0.1)(51.92 μmol/h) and 3.1 times of CNI(0.3)(33.37 μmol/h), respectively.

Key words: g-C3N4, Photocatalysis, Boron, iodine co-doping, Hydrogen evolution

中图分类号: 

TrendMD: