高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (3): 377.doi: 10.7503/cjcu20190643
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
王军1,2,王铁1,2,*
收稿日期:
2019-12-10
出版日期:
2020-03-10
发布日期:
2020-01-06
通讯作者:
王铁
作者简介:
王 铁, 男, 博士, 研究员, 主要从事纳米自组装的分析检测研究. E-mail: wangtie@iccas.ac.cn
基金资助:
WANG Jun1,2,WANG Tie1,2,*
Received:
2019-12-10
Online:
2020-03-10
Published:
2020-01-06
Contact:
Tie WANG
Supported by:
摘要:
纳米自组装技术的迅速发展拓宽了纳米材料的应用领域. 利用自组装合成纳米新材料是一种有效且具有发展前景的方法. 本综述介绍了纳米自组装技术的研究价值及近年来新兴的制备方法, 重点论述了驱动纳米自组装的作用类型, 包括范德华力、 静电作用、 磁力作用、 氢键、 熵效应以及疏溶剂相互作用、 DNA碱基互补配对等其它相互作用, 同时也对纳米自组装体的应用情况进行了阐述, 并探讨了利用纳米自组装技术研制新材料所面临的机遇和挑战.
中图分类号:
TrendMD:
王军, 王铁. 基于自组装技术的纳米功能材料研究进展. 高等学校化学学报, 2020, 41(3): 377.
WANG Jun, WANG Tie. Recent Progress in Functional Nanomaterials Based on Self-assembly Technology . Chem. J. Chinese Universities, 2020, 41(3): 377.
Fig.1 Decisive effect of ligand density and the symmetry of surface patterns on the directional self-assembly between particles[32] (A), (B) Side view and top view of coordination geometry of nanoparticles(NPs) in the crystal lattice; (C) contacting environment among the interparticle ligands; (D) side-by-side stacking of the ligands; (E) point-to-point stacking of the ligands; (F) schematics of the directional NP assembly through matching the symmetry of surface patterns. Copyright 2016, American Association for the Advancement of Science.
Fig.2 Gold nanoparticles(GNPs) modified with amphiphilic block copolymers(BCPs) assembly to form spherical vesicles (A) GNPs with high grafting density interact mainly through solvophobic interactions between polymer coatings to form 2D arrays; (B) GNPs with low grafting density interact mainly through van der Waals interactions between particle cores to form 1D stings[38]. Copyright 2016, Wiley-VCH.
Fig.3 Schematic representations of different packing models of self-assembled Ag-MXA superclusters induced by hydrogen bonding interactions[45] (A) The range of packing factor determines the geometry of the assembly: from hexagonal superclusters(i) to lamellar superclusters(ii); (B)—(D) schematic representations of different packing models: (B) hexagonal, (C) lamellar, (D) bi-lamellar; (E) the formation process of self-assembled Ag-MXA superclusters. Copyright 2018, Wiley-VCH.
Fig.4 Schematic illustration(A) and digital photo(B) expressing the assembly properties of Fe3O4@SiO2 driven by magnetic force in a complex magnetic field and schematic illustration(C) and digital photo(D) expressing the adjustable structure and photonic properties controlled by the magnetic field[50] Copyright 2012, American Chemical Society.
Fig.5 Images of Fe3O4 particles, Fe3O4@nSiO2 nanochains, and Fe3O4@nSiO2@mSiO2 nanochains prepared by a novel magnetic-field-guided interface coassembly approach[55] (A) TEM image of Fe3O4 particles; (B), (C) SEM and TEM images of Fe3O4@nSiO2 nanochains; (D), (E) SEM images of Fe3O4@nSiO2@mSiO2 nanochains in different magnifications; (F) TEM image of Fe3O4@nSiO2@mSiO2 nanochains expressing unique pores in the out silica shell. Copyright 2018, Wiley-VCH.
Fig.6 Schematic illustration of the importance of entropic attractions between NPAMs in controlling the lateral phase separation of the two types of amphiphiles in the membranes[60] Copyright 2014, American Chemical Society.
Fig.7 Levitation mediated self-assembly of a bilayered nanoassembly[67] (A) Schematic illustration of acoustic levitation self-assembly process; (B)—(F) the temporal evolution of an evaporating droplet collected with a camera; (G)—(J) SEM images of bilayered nanoassemblies assembled from different building blocks; (G) Au NC; (H) Au@Ag NB; (I) Au NBP; (J) Au TOH. Copyright 2019, American Chemical Society.
Fig.9 Diagrammatic sketch of assembly process of GSP@ZIF-8 core-shell structure(A) and the application of GSP@ZIF-8 in volatile organic compound(VOC) detection via SERS spectroscopy(B)[79] Copyright 2018, Wiley-VCH.
[1] | Zhang J. Z., Wang Z. L., Liu J., Chen S. W., Liu G. Y ., Translated by Cao M. S., Cao C. B., Self-Assembled Nanostructures, Chemical Industry Press, Beijing, 2004, 1— 14 |
( 曹茂盛, 曹传玉 [译]. 自组装纳米结构, 北京: 化学工业出版社, 2004, 1— 14) | |
[2] | Guo J. L., Tardy B. L., Christofferson A. J., Dai Y. L., Richardson J. J., Zhu W., Hu M., Ju Y., Cui J. W., Dagastine R. R., Yarovsky I., Caruso F ., Nat. Nanotech., 2016, 11( 12), 1105— 1111 |
[3] | Boles M. A., Engel M., Talapin D. V ., Chem. Rev., 2016, 116( 18), 11220— 11289 |
[4] | Zhang X. Y., Gong C. C., Akakuru O. U., Su Z. Q., Wu A. G., Wei G ., Chem. Soc. Rev., 2019, 48( 23), 5564— 5595 |
[5] | Grzelczak M., Vermant J., Furst E. M., Liz-Marzan L. M ., ACS Nano, 2010, 4( 7), 3591— 3605 |
[6] | Zhang S. M., Zeng H. C ., Chem. Mater., 2009, 21( 5), 871— 883 |
[7] | Zhao T. C., Elzatahry A., Li X. M., Zhao D. Y ., Nat. Rev. Mater., 2019, 4( 12), 775— 791 |
[8] | Li X., Iocozzia J., Chen Y. H., Zhao S. Q., Cui X., Wang W., Yu H. F., Lin S. L., Lin Z. Q ., Angew. Chem. Int. Ed., 2018, 57( 8), 2046— 2070 |
[9] | Tian Y., Zhang Y. G., Wang T., Xin H. L. L., Li H. L., Gang O ., Nat. Mater., 2016, 15( 6), 654— 661 |
[10] | Zhou T. Y., Zhu J. Y., Gong L. S., Nong L. T., Liu J. B ., J. Am. Chem. Soc., 2019, 141( 7), 2852— 2856 |
[11] | Correa-Duarte M. A., Liz-Marzan L. M ., J. Mater. Chem., 2006, 16( 1), 22— 25 |
[12] | Ruan C. M., Eres G., Wang W., Zhang Z. Y., Gu B. H ., Langmuir, 2007, 23( 10), 5757— 5760 |
[13] | Li T. T., Xue B., Wang B. W., Guo G. N., Han D. D., Yan Y. C., Dong A. G ., J. Am. Chem. Soc., 2017, 139( 35), 12133— 12136 |
[14] | Wibowo S. H., Sulistio Adrian., Wong E. H. H., Blencowe A., Qiao G. G ., Adv. Funct. Mater., 2015, 25( 21), 3147— 3156 |
[15] | Mertz D., Cui J. W., Yan Y., Devlin G., Chaubaroux C., Dochter A., Alles R., Lavalle P., Voegel J. C., Blencowe A., Auffinger P., Caruso F ., ACS Nano, 2012, 6( 9), 7584— 7594 |
[16] | Geng H. Y., Chen W. Y., Xu Z. P., Qian G. R., An J., Zhang H. J ., Chem. Eur. J., 2017, 23( 45), 10878— 10885 |
[17] | Zhu P., Jiao J. S., Shen R. Q., Ye Y. H., Fu S., Li D. L ., J. Appl. Phys., 2014, 115( 19), 194502 |
[18] | Pan R. J., Sun R., Wang. Z. H., Lindh J., Edstrom K., Stromme M., Nyholm L ., Nano Energy, 2019, 55, 316— 326 |
[19] | Li P., Hwang J. Y., Sun Y. K ., ACS Nano, 2019, 13( 2), 2624— 2633 |
[20] | Huang H. B., Wang Y., Jiao W. B., Cai F. Y., Shen M., Zhou S. G., Cao H. L., Lü J., Cao R ., ACS Sustainable Chem. Eng., 2018, 6( 6), 7871— 7879 |
[21] | Que R. H., Shao M. W., Zhuo S. J., Wen C. Y., Wang S. D., Lee S. T ., Adv. Funct. Mater., 2011, 21( 17), 3337— 3343 |
[22] | Yang Y., Song X., Li X. J., Chen Z. Y., Zhou C., Zhou Q. F., Chen Y ., Adv. Mater., 2018, 30( 36), 1706539 |
[23] | Zhang Y. M., Zhang F., Zhang X., Xu Y. M., Qi X. H., Quan C. S ., Chem. Res. Chinese Universities, 2018, 34( 4), 655— 660 |
[24] | Liu X. G., Zhang F., Jing X. X., Pan M. C., Liu P., Li W., Zhu B. W., Li J., Chen H., Wang L. H., Lin J. P., Liu Y., Zhao D. Y., Yan H., Fan C. H ., Nature, 2018, 559( 7715), 593— 598 |
[25] | Fu G. T., Liu H. M., You N. K., Wu J. Y., Sun D. M., Xu L., Tang Y. W., Chen Y ., Nano Res., 2016, 9( 3), 755— 765 |
[26] | Chen W., Bian A., Agarwal A., Liu L. Q., Shen H. B., Wang L. B., Xu C. L., Kotov N. A ., Nano Lett., 2009, 9( 5), 2153— 2159 |
[27] | Luo D., Yan C., Wang T ., Small, 2015, 11( 45), 5984— 6008 |
[28] | Lin Y., Boker A., He J. B., Sill K., Xiang H. Q., Abetz C., Li X. F., Wang J., Emrick T., Long S., Wang Q., Balazs A., Russell T. P ., Nature, 2005, 434( 7029), 55— 59 |
[29] | Wang T., Zhuang J. Q., Lynch J., Chen O., Wang Z. L., Wang X. R., LaMontagne D., Wu H. M., Wang Z. W., Cao Y. C ., Science, 2012, 338( 6105), 358— 363 |
[30] | Wang T., Wang X. R., LaMontagne D., Wang Z. W., Cao Y. C ., J. Am. Chem. Soc., 2013, 135( 16), 6022— 6025 |
[31] | Zhang Y., Guan T. Y., Han G., Guo T. Y., Zhang W. Q ., Macromolecules, 2019, 52( 2), 718— 728 |
[32] | Zeng C. J., Chen Y. X., Kirschbaum K., Lambright K. J., Jin R. C ., Science, 2016, 354( 6319), 1580— 1584 |
[33] | Gao B., Arya G., Tao A. R ., Nat. Nanotech., 2012, 7( 7), 433— 437 |
[34] | Cheng W. L., Hartman M. R., Smilgies D. M., Long R., Campolongo M. J., Li R. P., Sekar K., Hui C. Y., Luo D ., Angew. Chem. Int. Ed., 2010, 49( 2), 380— 384 |
[35] | Si K. J., Chen Y., Shi Q. Q., Cheng W. L ., Adv. Sci., 2017, 5( 1), 1700179 |
[36] | Zhu Z. N., Meng H. F., Liu W. J., Liu X. F., Gong J. X., Qiu X. H., Jiang L., Wang D., Tang Z. Y ., Angew. Chem. Int. Ed., 2011, 50( 7), 1593— 1596 |
[37] | Liu Y. J., He J., Yang K. K., Yi C. L., Liu Y., Nie L. M., Khashab N. M., Chen X. Y., Nie Z. H ., Angew.Chem. Int. Ed., 2015, 54( 52), 15809— 15812 |
[38] | Bishop K. J. M ., Angew. Chem. Int. Ed., 2016, 55( 5), 1598— 1600 |
[39] | Walker D. A., Leitsch E. K., Nap R. J., Szleifer I., Grzybowski B. A ., Nat. Nanotech., 2013, 8( 9), 676— 681 |
[40] | Zeng M. Q., Cao H., Zhang Q. Q., Gao X. W., Fu L ., Chem, 2018, 4( 3), 626— 636 |
[41] | Xu J., Yang W. M., Huang S. J., Yin H., Zhang H., Radjenovic P., Yang Z. L., Tian Z. Q., Li J. F ., Nano Energy, 2018, 49, 363— 371 |
[42] | Li Y. F., Song L., Wang B., He J. B., Li Y. L., Deng Z. X., Mao C. D ., Angew. Chem. Int. Ed., 2018, 130( 23), 7008— 7011 |
[43] | Han X. G., Li Y. L., Wu S. G., Deng Z. X ., Small, 2008, 4( 3), 326— 329 |
[44] | Hernandez E. A., Posada B., Irizarry R., Castro M. E ., J. Phys. Chem. B, 2005, 109( 15), 7251— 7257 |
[45] | Qin X. Y., Luo D., Xue Z. J., Song Q., Wang T ., Adv. Mater., 2018, 30( 9), 1706327 |
[46] | Qin X. Y., Li A. L., Liu K. Y., Xue Z. J., Song Q., Wang T ., Chem. Eur. J., 2019, 25( 45), 10662— 10667 |
[47] | Tang Z. Y., Kotov N. A., Giersig M ., Science, 2002, 297( 5579), 237— 240 |
[48] | Yan C., Wang T ., Chem. Soc. Rev., 2017, 46( 5), 1483— 1509 |
[49] | Sheparovych R., Sahoo Y., Motornov M., Wang S. M., Luo H., Prasad P. N., Sokolov I., Minko S ., Chem. Mater., 2006, 18( 3), 591— 593 |
[50] | He L., Wang M. S., Ge J. P., Yin Y. D ., Acc. Chem. Res., 2012, 45( 9), 1431— 1440 |
[51] | Ye M. M., Zorba S., He L., Hu Y. X., Maxwell R. T., Farah C., Zhang Q., Yin Y. D ., J. Mater. Chem., 2010, 20( 37), 7965— 7969 |
[52] | Chong W. H., Chin L. K., Tan R. L. S., Wang H., Liu A. Q., Chen H. Y ., Angew. Chem. Int. Ed., 2013, 52( 33), 8570— 8573 |
[53] | Yang S. L., Cao C. Y., Sun Y. B., Huang P. P., Wei F. F., Song W. G ., Angew. Chem. Int. Ed., 2015, 54( 9), 2661— 2664 |
[54] | Hill L. J., Pyun J ., ACS Appl. Mater. Interfaces, 2014, 6( 9), 6022— 6032 |
[55] | Wan L., Song H. Y., Chen X., Zhang Y., Yue Q., Pan P. P., Su J. C., Elzatahry A. A., Deng Y. H ., Adv. Mater., 2018, 30( 25), 1707515 |
[56] | Barry E., Dogic Z ., Proc. Natl. Acad. Sci. USA, 2010, 107( 23), 10348— 10353 |
[57] | Currie E. P. K., Norde W., Cohen Stuart M. A ., Adv. Colloid Interface Sci., 2003, 100, 205— 265 |
[58] | Lim R. Y. H., Deng J ., ACS Nano, 2009, 3( 10), 2911— 2918 |
[59] | Akcora P., Liu H. J., Kumar S. K., Moll J., Li Y., Benicewicz B. C., Schadler L. S., Acehan D., Panagiotopoulos A. Z., Pryamitsyn V., Ganesan V., Ilavsky J., Thiyagarajan P., Colby R. H., Douglas J. F ., Nat. Mater., 2009, 8( 4), 354— 359 |
[60] | Liu Y. J., Li Y. C., He J., Duelge K. J., Lu Z. Y., Nie Z. H ., J. Am. Chem. Soc., 2014, 136( 6), 2602— 2610 |
[61] | Yockell-Lelièvre H., Desbiens J., Ritcey A. M ., Langmuir, 2007, 23( 5), 2843— 2850 |
[62] | Ng K. C., Udagedara I. B., Rukhlenko I. D., Chen Y., Tang Y., Premaratne M., Cheng W. L ., ACS Nano, 2012, 6( 1), 925— 934 |
[63] | Qin X., Wang T., Jiang L ., Natl. Sci. Rev., 2017, 4( 5), 672— 677 |
[64] | Zhuang J. Q., Wu H. M., Yang Y. A., Cao Y. C ., Angew. Chem. Int. Ed., 2008, 47( 12), 2208— 2212 |
[65] | Zhuang J. Q., Wu H. M., Yang Y. A., Cao Y. C ., J. Am. Chem. Soc., 2007, 129( 46), 14166— 14167 |
[66] | Zhu M. Q., Wang L. Q., Exarhos G. J., Li A. D. Q ., J. Am. Chem. Soc., 2004, 126( 9), 2656— 2657 |
[67] | Shi Q. Q., Di W. L., Dong D. S., Yap L. W., Li L., Zang D. Y., Cheng W. L ., ACS Nano, 2019, 13( 5), 5243— 5250 |
[68] | Seeman N. C ., J. Theor. Biol., 1982, 99( 2), 237— 247 |
[69] | Yao G. B., Li J., Chao J., Pei H., Liu H. J., Zhao Y., Shi J. Y., Huang Q., Wang L. H., Huang W., Fan C. H ., Angew. Chem. Int. Ed., 2015, 54( 10), 2966— 2969 |
[70] | Shen C. Q., Lan X., Zhu C. G., Zhang W., Wang L. Y., Wang Q. B ., Adv. Mater., 2017, 29( 16), 1606533 |
[71] | Jain P. K., Eustis S., El-Sayed M. A ., J. Phys. Chem. B, 2006, 110( 37), 18243— 18253 |
[72] | Talapin D. V., Shevchenko E. V., Murray C. B, Kornowski A., Forster S., Weller H ., J. Am. Chem. Soc., 2004, 126( 40), 12984— 12988 |
[73] | Wang M. M., Zhang J., Wang P., Li C. P., Xu X. L., Jin Y. D ., Nano Res., 2018, 11( 7), 3854— 3863 |
[74] | Brown P., Kamat P. V ., J. Am. Chem. Soc., 2008, 130( 28), 8890— 8891 |
[75] | Lu A. H., Salabas E. L., Schuth F ., Angew. Chem. Int. Ed., 2007, 46( 8), 1222— 1244 |
[76] | Bian P. X., Zhang J. X., WangJ. Y., Yang J., Wang J. Y., Liu H. L., Sun Y. M., Li M. X., Zhang X. D ., Sci. Bull., 2018, 63( 14), 925— 934 |
[77] | Zhou T., Yan L. W., Xie C. M., Li P. F., Jiang L. L., Fang J., Zhao C. C., Ren F. Z., Wang K. F., Wang Y. B., Zhang H. P., Guo T. L., Lu X ., Small, 2019, 15( 25), 1805440 |
[78] | Cheng K. M., Ding Y. P., Zhao Y., Ye S. F., Zhao X., Zhang Y. L., Ji T. J., Wu H. H., Wang B., Anderson G. J., Ren L., Nie G. J ., Nano Lett., 2018, 18( 5), 3250— 3258 |
[79] | Qiao X. Z., Su B. S., Liu C., Song Q., Luo D., Mo G., Wang T ., Adv. Mater., 2018, 30( 5), 1702275 |
[80] | Luo D., Cui S. J., Liu Y., Shi C. Y., Song Q., Qin X. Y., Zhang T., Xue Z. J., Wang T ., J. Am. Chem. Soc., 2018, 140( 43), 14211— 14216 |
[81] | Liu L. Z., Chen S., Xue Z. J., Zhang Z., Qiao X. Z., Nie Z. X., Han D., Wang J. L., Wang T ., Nat. Commun., 2018, 9, 444 |
[82] | Liu Y., Luo D., Yu M., Wang Y., Jin S. S., Li Z. X., Cui S. J., He D. Q., Zhang T., Wang T., Zhou Y. H ., Adv. Funct. Mater., 2019, 29( 10), 1806445 |
[83] | Zhang L., Fan Q. K., Sha X., Zhong P., Zhang J., Yin Y. D., Gao C. B ., Chem. Sci., 2017,8(9), 6103— 6110 |
[84] | Xu J., Li X. M., Wu X., Wang W. Z., Fan R., Liu X. K., Xu H. L ., J. Phys. Chem. C, 2016, 120( 23), 12666— 12672 |
[85] | Ma Y., Wang X. L., Jia Y. S., Chen X. B., Han H. X., Li C ., Chem. Rev., 2014, 114( 19), 9987— 10043 |
[86] | Kudo A., Miseki Y ., Chem. Soc. Rev., 2009, 38( 1), 253— 278 |
[87] | Zhang J. Q., Li L., Xiao Z. X., Liu D., Wang S., Zhang J. J., Hao Y. T., Zhang W. Z ., ACS Sustainable Chem. Eng., 2016, 4( 4), 2037— 2046 |
[88] | Zhu C. Z., Fu S. F., Song J.H., Shi Q. R., Su D., Engelhard M. H., Li X. L., Xiao D. D., Li D. S., Estevez L., Du D., Lin Y. H ., Small, 2017, 13( 15), 1603407 |
[89] | Kwok K. M. Y., Ong S. W. D., Chen L. W., Zeng H. C ., ACS Catal., 2018, 8( 1), 714— 724 |
[90] | Luo H., Zhou X. F., Ellingford C., Zhang Y., Chen S., Zhou K., Zhang D., Bowen C. R., Wan C. Y ., Chem. Soc. Rev., 2019, 48( 16), 4424— 4465 |
[91] | Bai F., Xu L., Zhai X. Y., Chen X., Yang W. S ., Adv. Ener. Mater., 2019,1902107 |
[92] | Tian X. L., Zhao X., Su Y. Q., Wang L. J., Wang H. M., Dang D., Chi B., Liu H. F., Hensen E. J. M., Lou X. W. D., Xia B. Y ., Science, 2019, 366( 6467), 850— 856 |
[93] | Yue Y., Juarez-Robles D., Mukherjee P. P., Liang H ., ACS Appl. Energy Mater., 2018, 1( 5), 2056— 2066 |
[94] | Hao H. Y., Wang X., Shao Z. Q., Yang R. J ., Chem. J. Chinese Universities, 2015, 36(9), 1838—1845 |
( 郝红英, 王茜, 邵自强, 杨荣杰 . 高等学校化学学报, 2015, 36(9), 1838—1845) | |
[95] | Xia Y. N., Yang P. D., Sun Y. G., Wu Y. Y., Mayers B., Gates B., Yin Y. D., Kim F., Yan H. Q ., Adv. Mater., 2003, 15( 5), 353— 389 |
[96] | Ding Y. L., Wen Y. R., Wu C., van Aken P. A., Maier J., Yu Y ., Nano Lett., 2015, 15( 2), 1388— 1394 |
[97] | Lee J. E., Yu S. H., Lee D. J., Lee D. C., Han S. I., Sung Y. E., Hyeon T ., Energy Environ. Sci., 2012, 5( 11), 9528— 9533 |
[98] | Liu P. C., Xu Y., Zhu K. J., Bian K., Wang J., Sun X., Gao Y. F., Luo H. J., Lu L., Liu J. S ., J. Mater. Chem. A, 2017, 5( 18), 8307— 8316 |
[99] | Chen Z., Augustyn V., Jia X. L., Xiao Q. F., Dunn B., Lu Y. F ., ACS Nano, 2012, 6( 5), 4319— 4327 |
[100] | Jian Z. L., Zhao B., Liu P., Li F. J., Zheng M. B., Chen M. W., Shi Y., Zhou H. S ., Chem. Commun., 2014, 50( 10), 1215— 1217 |
[101] | Wen Y., He K., Zhu Y. J., Han F. D., Xu Y. H., Matsuda I., Ishii Y., Cumings J., Wang C. S ., Nat. Commun., 2014, 5, 4033 |
[102] | Yang B. J., Chen J. T., Lei S. L., Guo R. S., Li H. X., Shi S. Q., Yan X. B ., Adv. Energy Mater., 2018, 8( 10), 1702409 |
[103] | Li H. S., Zhu Y., Dong S. Y., Shen L. F., Chen Z. J., Zhang X. G., Yu G. H ., Chem. Mater., 2016, 28( 16), 5753— 5760 |
[1] | 任诗杰, 谯思聪, 刘崇静, 张文华, 宋礼. 铂单原子催化剂同步辐射X射线吸收谱的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220466. |
[2] | 李琳, 齐丰莲, 邱丽莉, 孟子晖. 基于六边形磁纳米片构建动态非晶态光学结构图案[J]. 高等学校化学学报, 2022, 43(8): 20220123. |
[3] | 仵宇帅, 尚颖旭, 蒋乔, 丁宝全. 可控自组装DNA折纸结构作为药物载体的研究进展[J]. 高等学校化学学报, 2022, 43(8): 20220179. |
[4] | 周雷雷, 程海洋, 赵凤玉. Pd基多相催化剂上CO2加氢反应的研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220279. |
[5] | 胡慧敏, 崔静, 刘丹丹, 宋佳欣, 张宁, 范晓强, 赵震, 孔莲, 肖霞, 解则安. 过渡金属修饰对Pt/M-DMSN催化剂丙烷脱氢性能的影响[J]. 高等学校化学学报, 2022, 43(4): 20210815. |
[6] | 俞彬, 谌小燕, 赵越, 陈卫昌, 肖新颜, 刘海洋. 氧化石墨烯基钴卟啉复合材料的电催化析氢反应[J]. 高等学校化学学报, 2022, 43(2): 20210549. |
[7] | 章丽玲, 刘浏, 郑明秋, 方文凯, 刘达, 唐宏武. 基于上转换发光共振能量转移的CRISPR/Cas12a生物传感系统用于HPV16 DNA双信号检测[J]. 高等学校化学学报, 2022, 43(11): 20220412. |
[8] | 刘洋, 李旺昌, 张竹霞, 王芳, 杨文静, 郭臻, 崔鹏. Sc3C2@C80与[12]CPP纳米环之间非共价相互作用的理论研究[J]. 高等学校化学学报, 2022, 43(11): 20220457. |
[9] | 姜珊, 申倩倩, 李琦, 贾虎生, 薛晋波. Pd增强缺陷态TiO2纳米管阵列的光催化产氢性能[J]. 高等学校化学学报, 2022, 43(10): 20220206. |
[10] | 许文哲, 张皓. 超分子相互作用主导的纳米药物成核[J]. 高等学校化学学报, 2022, 43(10): 20220264. |
[11] | 杜顺福, 王文经, EL-SAYED El-Sayed M., 苏孔钊, 袁大强, 洪茂椿. 一种具有化学发光性能的锆基金属有机四面体[J]. 高等学校化学学报, 2022, 43(1): 20210628. |
[12] | 李波, 孟禹汐, 王雯雯, 臧宏瑛. 多核多氧硫钼酸盐化合物的合成及质子传导性能[J]. 高等学校化学学报, 2022, 43(1): 20210657. |
[13] | 薛谨, 曹小卫, 刘依帆, 王敏. 纸质空心金纳米笼SERS传感器的制备及对非小细胞肺癌患者痰液中miRNAs的快速高灵敏检测[J]. 高等学校化学学报, 2021, 42(8): 2393. |
[14] | 温炜, 黄达锭, 鲍劲霄, 张增辉. PD-1与单克隆抗体残基特异性结合机制的计算丙氨酸扫描研究[J]. 高等学校化学学报, 2021, 42(7): 2161. |
[15] | 丁中振, 李天, 李长明, 赵宇飞, 宋宇飞. 水滑石基催化剂催化合成碳纳米材料的研究进展[J]. 高等学校化学学报, 2021, 42(6): 1622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||