高等学校化学学报 ›› 2014, Vol. 35 ›› Issue (11): 2317.doi: 10.7503/cjcu20140641

• 分析化学 • 上一篇    下一篇

密闭式微波降解法促进常见人参皂苷向稀有人参皂苷转化的规律

姚华1, 金永日1, 杨洁1, 李兰杰1, 孙婷1, 时晓磊2(), 李绪文1()   

  1. 1. 吉林大学化学学院, 长春 130012
    2. 吉林大学军需科技学院, 长春 130052
  • 收稿日期:2014-07-07 出版日期:2014-11-10 发布日期:2014-10-21
  • 作者简介:联系人简介: 李绪文, 男, 博士, 教授, 博士生导师, 主要从事天然药物化学研究. E-mail:xwli@jlu.edu.cn;时晓磊, 女, 博士, 副教授, 主要从事食品分析研究. E-mail:xlshi@jlu.edu.cn
  • 基金资助:
    国家科技支撑计划(批准号: 2007BAI38B05)资助

Conversion Rule of Rare Ginsenosides Produced from Major Ginsenosides by Confined Microiwave Promoted Degradation Method

YAO Hua1, JIN Yongri1, YANG Jie1, LI Lanjie1, SUN Ting1, SHI Xiaolei2,*(), LI Xuwen1,*()   

  1. 1. College of Chemistry, Jilin University, Changchun 130012, China
    2. College of Quartermaster Technology, Jilin University, Changchun 130052, China
  • Received:2014-07-07 Online:2014-11-10 Published:2014-10-21
  • Contact: SHI Xiaolei,LI Xuwen E-mail:xlshi@jlu.edu.cn;xwli@jlu.edu.cn
  • Supported by:
    † Supported by the National Key Technology R & D Program of China(No.2007BAI38B05).

摘要:

采用密闭微波技术对7种常见人参皂苷单体(Rb1, Rb2, Rb3, Rc, Rd, Re和Rg1)进行降解, 通过高效液相色谱(HPLC)分析并与相同条件下非微波降解物对比, 研究了密闭微波降解人参皂苷的产物在化学结构及组成上的变化规律, 以期快速、 高效地制备生物活性高的稀有人参皂苷. 结果表明, 密闭式微波降解法能够使常见人参皂苷基本降解完全, 而相同条件下非微波降解法则基本不发生降解. 原人参二醇型人参皂苷易水解掉C20位糖, 并发生C20位构型变化, 生成20(R)-Rg3和20(S)-Rg3, 其中20-(R)为优势构型, C20位羟基进一步脱水产生稀有人参皂苷Rk1和Rg5. 同时, 20(S/R)-Rg3失去C3位的1分子葡萄糖转化为20(S/R)-Rh2, C20位羟基再进一步脱水生成了 Rk2和Rh3. 此外, 人参皂苷C20位所连的糖种类与构型影响了降解产物中各稀有皂苷的组成与比例, 但7种原人参二醇型人参皂苷密闭式微波降解产物中Rg5含量均为最高. 密闭式微波降解对原三醇型人参皂苷的转化作用与原二醇型人参皂苷具有相似的规律, 人参皂苷Re和Rg1的密闭式微波降解产物中Rh4含量均为最高. 本文结果进一步说明在相同的降解条件下, 密闭式微波降解法的降解效率远高于高温高压非微波降解法, 密闭式微波降解可明显促进常见人参皂苷向稀有人参皂苷转化, 因此采用密闭微波技术对常见人参皂苷进行降解可以大量获得稀有人参皂苷.

关键词: 微波降解, 高效液相色谱, 稀有人参皂苷, 转化

Abstract:

In order to prepare the rare ginsenosides which were considered to have higher bioactivities, confined microwave method to promote the degradation of 7 kinds of major ginsenosides(Rb1, Rb2, Rb3, Rc, Rd, Re, Rg1) to rare ginsenosides were adopted. Comparing with the degradation products of non-microwave method at the same condition, the rules of conversion about the structures and ingredients of degradation products were concluded by HPLC analysis. The results indicated that confined microwave method can completely degrade all the major ginsenosides, while nearly no major ginsenosides can be degraded under the same condition of non-microwave method. Protopanaxadiol-type ginsenosides were easily deglycosylated at C20, where the conformational changes would take place. It would generate 20(S)-Rg3 and 20(R)-Rg3 among which the R-type was the superior configuration. Dehydration effect of the hydroxyl at C20 made 20(S/R)-Rg3 convert to Rk1 and Rg5, meanwhile the losing of glucose of 20(S/R)-Rg3 at C3 position made the generation of 20(S/R)-Rh2. After further dehydration at C20 position, 20(S/R)-Rh2 converted to Rk2 and Rh3. Moreover, the configurations of glycosyls at C20 of ginsenosides would affect the proportion and composition of rare ginse-nosides in degradation products, but Rg5 reached highest content in all confined microwave degradation products of 7 kinds of protopanaxadiol-type ginsenosides. Protopanaxatriol-type ginsenosides had similar rules with protopanaxadiol-type ginsenosides by the confined microwave degradation method, and the products of Re and Rg1 were determined in the highest content of Rh4.

Key words: Microwave degradation, High performance liquid chromatography(HPLC), Rare ginsenoside, Conversion

中图分类号: 

TrendMD: