高等学校化学学报 ›› 2026, Vol. 47 ›› Issue (1): 20250280.doi: 10.7503/cjcu20250280

• 综合评述 • 上一篇    下一篇

静电纺纳米纤维过渡金属基双功能电催化剂及其在全解水中的应用

银泳婷, 卢晓峰()   

  1. 吉林大学化学学院麦克德尔米德实验室,长春 130012
  • 收稿日期:2025-09-29 出版日期:2026-01-10 发布日期:2025-12-02
  • 通讯作者: 卢晓峰 E-mail:xflu@jlu.edu.cn

Electrospun Nanofibrous Transition Metal-based Bifunctional Electrocatalysts Toward Overall Water Splitting

YIN Yongting, LU Xiaofeng()   

  1. Alan G. MacDiarmid Institute,College of Chemistry,Jilin University,Changchun 130012,China
  • Received:2025-09-29 Online:2026-01-10 Published:2025-12-02
  • Contact: LU Xiaofeng E-mail:xflu@jlu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52273056);国家自然科学基金(52273056);the Science and Technology Development Program of Jilin Province, China(YDZJ202501ZYTS305);吉林省科技厅项目(YDZJ202501ZYTS305)

摘要:

电化学水分解是目前最具潜力的可持续制氢途径之一, 然而, 阴极析氢反应与阳极析氧反应所需的高过电位严重制约了其规模化应用. 过渡金属基催化剂因成本低、 组成可调和具有类贵金属催化活性, 可有效降低电极过电位, 被视为替代贵金属催化剂的理想材料, 因而备受关注. 本文总结了基于静电纺纳米纤维构筑的过渡金属双功能电催化剂的主要类型(金属、 氧化物、 磷化物、 硫化物及碳化物等体系), 重点讨论了提升其催化性能的关键策略(包括异质界面工程、 杂原子掺杂、 金属-非金属-金属桥接结构设计以及单原子位点调控等). 最后, 探讨了该领域面临的挑战与未来发展的方向, 以期为高性能全解水电催化剂的理性设计与开发提供参考.

关键词: 静电纺丝, 纳米纤维, 过渡金属基催化剂, 全解水, 性能优化

Abstract:

Electrochemical water splitting represents a sustainable technology for hydrogen(H2) production. However, its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER) and the anodic oxygen evolution reaction(OER). Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts, owing to their low cost, tunable composition, and noble-metal-like catalytic activity. Nevertheless, systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS) are still limited. This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers (NFs), including metals, oxides, phosphides, sulfides, and carbides. Key strategies for enhancing their catalytic performance are systematically summarized, such as heterointerface engineering, heteroatom doping, metal-nonmetal-metal bridging architectures, and single-atom site design. Finally, current challenges and future research directions are discussed, aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS.

Key words: Electrospinning, Nanofibers, Transition metal-based catalyst, Overall water splitting, Performance optimization

中图分类号: 

TrendMD: