高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (12): 20220577.doi: 10.7503/cjcu20220577
汪诗琪1, 罗博文1, 俞计成1,2,3,4(), 顾臻1,2,3,4,5(
)
收稿日期:
2022-08-31
出版日期:
2022-12-10
发布日期:
2022-10-14
通讯作者:
俞计成,顾臻
E-mail:yujicheng@zju.edu.cn;guzhen@zju.edu.cn
基金资助:
WANG Shiqi1, LUO Bowen1, YU Jicheng1,2,3,4(), GU Zhen1,2,3,4,5(
)
Received:
2022-08-31
Online:
2022-12-10
Published:
2022-10-14
Contact:
YU Jicheng, GU Zhen
E-mail:yujicheng@zju.edu.cn;guzhen@zju.edu.cn
Supported by:
摘要:
由于具备组织穿透深度深和时空分辨率高等优势, 近年来近红外二区(Near-infrared-Ⅱ, NIR-Ⅱ, 1000~1700 nm)荧光成像技术得到了快速发展, 其在肿瘤临床诊断和治疗的潜力更是引发了广泛关注. 本文首先阐释了NIR-Ⅱ窗口荧光成像的原理及其优势, 随后根据结构分类归纳总结了现有荧光团的特征, 重点介绍了荧光探针在性能优化上的进展以及在肿瘤早期检测、 术中导航和光疗中的应用, 最后讨论了现有NIR-Ⅱ 荧光探针的局限以及临床转化面临的挑战, 并对未来的发展方向进行了展望.
中图分类号:
TrendMD:
汪诗琪, 罗博文, 俞计成, 顾臻. 近红外二区活体荧光成像在肿瘤诊疗中的应用. 高等学校化学学报, 2022, 43(12): 20220577.
WANG Shiqi, LUO Bowen, YU Jicheng, GU Zhen. Near-infrared-Ⅱ Fluorescence Imaging for Tumor Diagnosis and Therapy. Chem. J. Chinese Universities, 2022, 43(12): 20220577.
Fig.1 Illustration of extended NIR⁃Ⅱ imaging window and four sub⁃windows[28](A) The light absorption spectrum of water within 700—2500 nm and the exhibition of four sub-windows in NIR-Ⅱ window(NIR-Ⅱa, NIR-Ⅱb, NIR-Ⅱx and NIR-Ⅱc). The gray arrows represent the absorption peaks; (B) equivalent images of a line source through a bio-tissue of 1 mm thickness in NIR-Ⅱa(1300—1400 nm), NIR-Ⅱb(1500—1700 nm), NIR-Ⅱx(1400—1500 nm) and NIR-Ⅱc(1700—1880 nm) after the simulation via the Monte Carlo method.Copyright 2021, Springer Nature.
Fig.2 Interactions between light and biological tissues in visible, NIR⁃Ⅰ and NIR⁃Ⅱ imaging windows[9](A) Schematic diagram of the interactions between the photons and tissue in fluorescence imaging; (B) reduced scattering coefficients of different biological tissues and intralipid tissue phantom as a function of wavelength in the range of 400—1700 nm; (C) absorption spectra of oxygenated haemoglobin(red line) and deoxygenated haemoglobin(blue line) through a 1-mm-long path in human blood in visible and NIR-Ⅰ windows; (D) absorption spectra of water through a 1-mm-long path in the range of 400—1800 nm; (E) autofluorescence spectra of ex vivo mouse liver(black), spleen(red) and heart tissue(blue) under 808 nm excitation light.Copyright 2017, Springer Nature.
Fig.3 Surface modification of SWCNTs for assessing efficacy of chemotherapeutics(A) Surface coating of DNA on a SWCNT by exchange of sodium deoxycholate; (B) enhancement of fluorescence intensity after coating DNA on the surface of SWCNT[46]; (C) change of the endogenous expression of H2O2 measured using photolumines-cence(PL) signals emitted by H2O2 dye and (GT)15-SWCNT; (D) cell viability assay of pancreatic ductal adenocarcinoma cells after exposure to 10 μmol/L gemcitabine treatment at three different time points[49].(A, B) Copyright 2020, Elsevier; (C, D) Copyright 2019, American Association for Cancer Research.
Fig.4 Water⁃soluble and enzyme⁃responsive QDs achieved by surface modification(A) The fabrication of PEGylated polyacylthiourea dendrimer(PEG-PATU)-encapsulated Ag2S QDs; (B) the NIR-Ⅱ fluorescence images of the BALB/c mouse at timed intervals after in vivo injection of A549 cancer cells incubated with PEG-PATU Ag2S QDs for 4 h[53]; (C) surface modification of a PbS/CdS/ZnS(core/shell/shell) QDs with fluorescence quenching; (D) the activation process of fluorescent QDs by the enzymatic cleavage of MMP-2 in tumor microenvironment[55].(A, B) Copyright 2020, the Royal Chemical Society; (C, D) Copyright 2017, American Chemical Society.
Fig.5 RENPs applied in tumor imaging after lanthanide doping and surface modification(A) The visible and NIR-Ⅱb luminescence spectra of NaLuF4:Gd/Yb/Er nanorods(Ln-NRs) doped with different contents of Ce3+; (B) optical imaging of primary(site 1) and metastatic(site 2) tumors using poly(acrylic acid)-modified Lu-NRs(PAA-Ln-NRs) as fluorescence probe; (C) magnified tumor vascular image and cross-sectional fluorescence intensity profiles along blue lines 1 and 2 of the tumor site after 10 s intravenous injection of PAA-Lu-NRs solution. The scale bar indicates 2 mm. The white circle indicates the necrosis region in the epidermis of the primary tumor[65]; (D) supramolecular recognition-induced assembly and 980 nm NIR-regulated disassembly of UCNP and DCNP; (E) the two successive injections cause in vivo assembly of azobenzene modified UCNP(UCNP@Azo) and β-cyclodextrin modified DCNP(DCNP@β-CD) with improved tumor targeting. The 980 nm NIR-regulated in vivo disassembly enables rapid clearance in liver. Irradiation of 808 nm lastly was utilized for NIR-Ⅱ bioimaging[69].(A—C) Copyright 2019, American Chemical Society; (D, E) Copyright 2018, Wiley-VCH.
Fig.6 Two typical SMDs with polymethine backbone and donor⁃acceptor⁃donor structure(A) Chemical structure of 5H5 fluorophore with polymethine backbone; (B) NIR-Ⅱ and NIR-Ⅱa imaging of blood vessels around and within the nude mouse tumors under 808 and 1064 nm lasers[90]; (C) chemical structure of CH1055 with donor-acceptor-donor structure; (D) fluorescent signals for lung metastasis evaluation by CH1055-PEG-Affibody and Hematoxylin and Eosin staining results of part 1, 2, 3, 4 in the lung[102].(A, B) Copyright 2019, American Chemical Society; (D) Copyright 2019, Wiley-VCH.
Fig.7 Mechanism, strategies of fluorescent properties optimization and tumor imaging of AIEgens(A) The mechanism of AIE through restriction of intramolecular motion at a morphological level[26]; (B) the chemical structure of BPST which is red-shifted compared to an NIR-Ⅰ AIEgen(BPBT) by substitution of a sulfur atom with selenium[112]; (C) the structure of HQL2 and the acquired fluorescence images of U87MG-tumor-bearing nude mice with different filters and exposure times under 808 nm wavelength excitation(90 mW/cm2)[113]; (D) fabrication of TQ-BPN dots; (E) NIR-Ⅱ fluorescence microscopic imaging for visualizing EPR effect in the old and new tumors at different time points. Depth=180 µm. The scale bar indicates 100 µm[114].(A) Copyright 2020, the authors; (B) Copyright 2019, Wiley-VCH; (C) Copyright 2020, the Royal Society of Chemistry; (D, E) Copyright 2018, Wiley-VCH.
Fig.8 Fluorescence intensity enhancement of Pdots by structural modification of polymers(A) Chemical structures of three quinoid conjugated polymers with different lengths of thiophene repeat units; (B) in vivo fluorescence images of a mouse at 0, 3, 6, and 10 d after subcutaneous injection with 1×106 of 4T1 cancer cells cultured with a 0.1 mg/mL solution of the TT-3T conjugated polymers(white arrows point to the injection region). The scale bar indicates 10 mm[120]; (C) schematic illustration of nanoscale fluorous effect to maintain hydrophobic interior and minimize structure distortion of the Pdots; (D) quantitative analysis of cerebral vascular morphology of wild-type C57BL/6 mice and transgenic brain tumors-bearing mice(ND2:SmoA1 mice) imaged by fluorinated Pdots. n=5. The data are analyzed by two-sided Student's t test. Red data are reported as mean ± standard deviation[125].(A, B) Copyright 2019, American Chemical Society; (C, D) Copyright 2020, Wiley-VCH.
Fig.9 Fluorescence probes integrating NIR⁃Ⅱ imaging with phototherapy(A) Synthesis and chemical structure of SY1080; (B) schematic illustration of prepared SY1080 to display its multifunctional PA/NIR-Ⅱ/PTT theranostic effect on tumor-bearing mice with laser irradiation[134]; (C) schematic illustration of RBCp fabrication. With an 808 nm laser irradiation, RBCp can continuously release ICG and O2, which can be applied for NIR-Ⅱ fluorescence bioimaging-guided tumor surgery as well as to enhance the effect of PDT[149].(A, B) Copyright 2019, American Chemical Society; (C) Copyright 2021, Wiley-VCH.
77 | Li Q., Zeman C. J. T., Ma Z., Schatz G. C., Gu X. W., Small, 2021, 17(11), e2007992 |
78 | Song X., Zhu W., Ge X., Li R., Li S., Chen X., Song J., Xie J., Chen X., Yang H., Angew. Chem. Int. Ed., 2021, 60(3), 1306—1312 |
79 | Song X. R., Li S. H., Guo H. H., You W. W., Shang X. Y., Li R. F., Tu D. T., Zheng W., Chen Z., Yang H. H., Chen X. Y., Angew. Chem. Int. Ed., 2019, 58(52), 18981—18986 |
80 | Ge X. G., Su L. C., Yang L. J., Fu Q. R., Li Q. Q., Zhang X., Liao N., Yang H. H., Song J. B., Anal. Chem., 2021, 93(41), 13893—13903 |
81 | Dang H., Yan L., Biomed. Mater., 2021, 16(2), 022001 |
82 | Chen H., Dong B., Tang Y., Lin W., Acc. Chem. Res., 2017, 50(6), 1410—1422 |
83 | Zhu S., Yang Q., Antaris A. L., Yue J., Ma Z., Wang H., Huang W., Wan H., Wang J., Diao S., Zhang B., Li X., Zhong Y., Yu K., Hong G., Luo J., Liang Y., Dai H., Proc. Natl. Acad. Sci. USA, 2017, 114(5), 962—967 |
84 | Troyan S. L., Kianzad V., Gibbs⁃Strauss S. L., Gioux S., Matsui A., Oketokoun R., Ngo L., Khamene A., Azar F., Frangioni J. V., Ann. Surg. Oncol., 2009, 16(10), 2943—2952 |
85 | Tummers Q. R., Schepers A., Hamming J. F., Kievit J., Frangioni J. V., Van De Velde C. J., Vahrmeijer A. L., Surgery, 2015, 158(5), 1323—1330 |
86 | Xue D. W., Wu D., Lu Z. Y., Neuhaus J., Zebibula A., Feng Z., Cheng S., Zhou J., Qian J., Li G. H., Engineering, 2022, doi:10.1016/j.eng.2021.07.032 |
87 | Carr J. A., Franke D., Caram J. R., Perkinson C. F., Saif M., Askoxylakis V., Datta M., Fukumura D., Jain R. K., Bawendi M. G., Bruns O. T., Proc. Natl. Acad. Sci. USA, 2018, 115(17), 4465—4470 |
88 | Zhu S., Yung B. C., Chandra S., Niu G., Antaris A. L., Chen X., Theranostics, 2018, 8(15), 4141—4151 |
89 | Zhu S., Hu Z., Tian R., Yung B. C., Yang Q., Zhao S., Kiesewetter D. O., Niu G., Sun H., Antaris A. L., Chen X., Adv. Mater., 2018, 30(34), 1802546 |
90 | Ding B. B., Xiao Y. L., Zhou H., Zhang X., Qu C. R., Xu F. C., Deng Z. X., Cheng Z., Hong X. C., J. Med. Chem., 2019, 62(4), 2049—2059 |
91 | Kopainsky B., Qiu P., Kaiser W., Sens B., Drexhage K. H., Appl. Phys. B, 1982, 29(1), 15—18 |
92 | Tao Z., Hong G., Shinji C., Chen C., Diao S., Antaris A. L., Zhang B., Zou Y., Dai H., Angew. Chem. Int. Ed. Engl., 2013, 52(49), 13002—13006 |
93 | Li B., Lu L., Zhao M., Lei Z., Zhang F., Angew. Chem. Int. Ed. Engl., 2018, 57(25), 7483—7487 |
94 | Cosco E. D., Caram J. R., Bruns O. T., Franke D., Day R. A., Farr E. P., Bawendi M. G., Sletten E. M., Angew. Chem. Int. Ed. Engl., 2017, 56(42), 13126—13129 |
95 | Bandi V. G., Luciano M. P., Saccomano M., Patel N. L., Bischof T. S., Lingg J. G. P., Tsrunchev P. T., Nix M. N., Ruehle B., Sanders C., Riffle L., Robinson C. M., Difilippantonio S., Kalen J. D., Resch⁃Genger U., Ivanic J., Bruns O. T., Schnermann M. J., Nat. Methods, 2022, 19(3), 353—358 |
96 | Wang R., Chen J., Gao J., Chen J. A., Xu G., Zhu T., Gu X., Guo Z., Zhu W. H., Zhao C., Chem. Sci., 2019, 10(30), 7222—7227 |
97 | Xu G., Yan Q., Lv X., Zhu Y., Xin K., Shi B., Wang R., Chen J., Gao W., Shi P., Fan C., Zhao C., Tian H., Angew. Chem. Int. Ed. Engl., 2018, 57(14), 3626—3630 |
98 | Tang Y., Li Y., Hu X., Zhao H., Ji Y., Chen L., Hu W., Zhang W., Li X., Lu X., Huang W., Fan Q., Adv. Mater., 2018, 30(31), e1801140 |
99 | Yang Q., Ma Z., Wang H., Zhou B., Zhu S., Zhong Y., Wang J., Wan H., Antaris A., Ma R., Zhang X., Yang J., Zhang X., Sun H., Liu W., Liang Y., Dai H., Adv. Mater., 2017, 29(12), 1605497 |
100 | Feng Y., Zhu S., Antaris A. L., Chen H., Xiao Y., Lu X., Jiang L., Diao S., Yu K., Wang Y., Herraiz S., Yue J., Hong X., Hong G., Cheng Z., Dai H., Hsueh A. J., Chem. Sci., 2017, 8(5), 3703—3711 |
101 | Antaris A. L., Chen H., Cheng K., Sun Y., Hong G., Qu C., Diao S., Deng Z., Hu X., Zhang B., Zhang X., Yaghi O. K., Alamparambil Z. R., Hong X., Cheng Z., Dai H., Nat. Mater., 2016, 15(2), 235—242 |
102 | Zhou H., Yi W., Li A., Wang B., Ding Q., Xue L., Zeng X., Feng Y., Li Q., Wang T., Li Y., Cheng X., Tang L., Deng Z., Wu M., Xiao Y., Hong X., Adv. Healthcare Mater., 2020, 9(1), e1901224 |
103 | Zhou H., Li S. S., Zeng X. D., Zhang M. X., Tang L., Li Q. Q., Chen D. L., Meng X. L., Hong X. C., Chin. Chem. Lett., 2020, 31(6), 1382—1386 |
104 | Yang J., Xie Q., Zhou H., Chang L., Wei W., Wang Y., Li H., Deng Z., Xiao Y., Wu J., Xu P., Hong X., J. Proteome Res., 2018, 17(7), 2428—2439 |
105 | Yang Q., Hu Z., Zhu S., Ma R., Ma H., Ma Z., Wan H., Zhu T., Jiang Z., Liu W., Jiao L., Sun H., Liang Y., Dai H., J. Am. Chem. Soc., 2018, 140(5), 1715—1724 |
106 | Antaris A. L., Chen H., Diao S., Ma Z., Zhang Z., Zhu S., Wang J., Lozano A. X., Fan Q., Chew L., Zhu M., Cheng K., Hong X., Dai H., Cheng Z., Nat. Commun., 2017, 8, 15269 |
107 | Qian J., Tang B. Z., Chem, 2017, 3(1), 56—91 |
108 | He B. R., Situ B., Zhao Z. J., Zheng L., Small Methods, 2020, 4(4), 1900583 |
109 | Shi T. Y., Huang C. C., Li Y., Huang F. H., Yin S. C., Biomaterials, 2022, 285, 121535 |
110 | Xu W., Wang D., Tang B. Z., Angew. Chem. Int. Ed. Engl., 2021, 60(14), 7476—7487 |
111 | Liu S., Li Y., Kwok R. T. K., Lam J. W. Y., Tang B. Z., Chem. Sci., 2020, 12(10), 3427—3436 |
112 | Wu W., Yang Y. Q., Yang Y., Yang Y. M., Zhang K. Y., Guo L., Ge H. F., Chen X. W., Liu J., Feng H., Small, 2019, 15(20), 1805549 |
113 | Li Q. Q., Ding Q. H., Li Y., Zeng X. D., Liu Y. S., Lu S. Y., Zhou H., Wang X. F., Wu J. Z., Meng X. L., Deng Z. X., Xiao Y. L., Chem. Commun., 2020, 56(22), 3289—3292 |
114 | Qi J., Sun C., Zebibula A., Zhang H., Kwok R. T. K., Zhao X., Xi W., Lam J. W. Y., Qian J., Tang B. Z., Adv. Mater., 2018, 30(12), e1706856 |
115 | Caspar J. V., Kober E. M., Sullivan B. P., Meyer T. J., J. Am. Chem. Soc., 1982, 104(2), 630—632 |
116 | Bai F., Gong X., Zhan X., Hu W., Fu H., Bjornholm T., Organic Optoelectronics, John Wiley & Sons, Hoboken, 2012 |
117 | Qu C. R., Xiao Y. L., Zhou H., Ding B. B., Li A. G., Lin J. C., Zeng X. D., Chen H., Qian K., Zhang X., Adv. Opt. Mater., 2019, 7(15), 1900229 |
118 | Liu S. J., Chen C., Li Y. Y., Zhang H. K., Liu J. K., Wang R., Wong S. T. H., Lam J. W. Y., Ding D., Tang B., Adv. Funct. Mater., 2020, 30(7), 1908125 |
119 | Guo B., Sheng Z., Hu D., Li A., Xu S., Manghnani P. N., Liu C., Guo L., Zheng H., Liu B., ACS Nano, 2017, 11(10), 10124—10134 |
120 | Zhang W., Huang T., Li J., Sun P., Wang Y., Shi W., Han W., Wang W., Fan Q., Huang W., ACS Appl. Mater. Interfaces, 2019, 11(18), 16311—16319 |
121 | Chen Y., Chen S. Y., Yu H. L., Wang Y. S., Cui M. Y., Wang P., Sun P. F., Ji M., Adv. Healthcare Mater., 2022, 11(21), 2201158 |
122 | Yuan Y., Hou W. Y., Qin W. P., Wu C. F., Biomater. Sci., 2021, 9(2), 328—346 |
123 | Verma M., Chan Y. H., Saha S., Liu M. H., ACS Appl. Bio. Mater., 2021, 4(3), 2142—2159 |
124 | Chen Y., Sun B., Jiang X., Yuan Z., Chen S., Sun P., Fan Q., Huang W., J. Mater. Chem. B, 2021, 9(4), 1002—1008 |
125 | Liu Y., Liu J., Chen D., Wang X., Zhang Z., Yang Y., Jiang L., Qi W., Ye Z., He S., Liu Q., Xi L., Zou Y., Wu C., Angew. Chem. Int. Ed. Engl., 2020, 59(47), 21049—21057 |
126 | Liu Y., Liu J. F., Chen D. D., Wang X. S., Liu Z. B., Liu H., Jiang L. H., Wu C. F., Zou Y. P., Macromolecules, 2019, 52(15), 5735—5740 |
127 | Guo B., Feng Z., Hu D., Xu S., Middha E., Pan Y., Liu C., Zheng H., Qian J., Sheng Z., Liu B., Adv. Mater., 2019, 31(30), e1902504 |
128 | Zhang Q., Zhou H. J., Chen H., Zhang X., He S. Q., Ma L. N., Qu C. R., Fang W., Han Y. J., Wang D., Huang Y. J., Sun Y. M., Fan Q. L., Chen Y., Cheng Z., Small, 2019, 15(45), 1903382 |
129 | Liang P., Huang X., Wang Y., Chen D., Ou C., Zhang Q., Shao J., Huang W., Dong X., ACS Nano, 2018, 12(11), 11446—11457 |
130 | Dai H., Wang X., Shao J., Wang W., Mou X., Dong X., Small, 2021, 17(44), e2102646 |
131 | Yan J. Q., Zhang X. D., Liu Y., Ye Y. Q., Yu J. C., Chen Q., Wang J. Q., Zhang Y. Q., Hu Q. Y., Kang Y., Yang M., Gu Z., Nano Res., 2019, 12(6), 1313—1320 |
132 | Chen Q., Hu Q. Y., Dukhovlinova E., Chen G. J., Ahn S., Wang C., Ogunnaike E. A., Ligler F. S., Dotti G., Gu Z., Adv. Mater., 2019, 31(23), 1900192 |
133 | Li T. W., Li C. Y., Ruan Z., Xu P. P., Yang X. H., Yuan P., Wang Q. B., Yan L. F., ACS Nano, 2019, 13(3), 3691—3702 |
134 | Zhang R., Wang Z., Xu L., Xu Y., Lin Y., Zhang Y., Sun Y., Yang G., Anal. Chem., 2019, 91(19), 12476—12483 |
135 | Meng X., Zhang J., Sun Z., Zhou L., Deng G., Li S., Li W., Gong P., Cai L., Theranostics, 2018, 8(21), 6025—6034 |
136 | Cao Y. Y., Dou J. H., Zhao N. J., Zhang S. M., Zheng Y. Q., Zhang J. P., Wang J. Y., Pei J., Wang Y. P., Chem. Mater., 2017, 29(2), 718—725 |
137 | Gao S., Wei G., Zhang S., Zheng B., Xu J., Chen G., Li M., Song S., Fu W., Xiao Z., Lu W., Nat. Commun., 2019, 10(1), 2206 |
138 | Sun P. F., Wu Q., Sun X. L., Miao H., Deng W. X., Zhang W. S., Fan Q. L., Huang W., Chem. Commun., 2018, 54(95), 13395—13398 |
139 | Yang T., Tang Y. A., Liu L., Lv X. Y., Wang Q. L., Ke H. T., Deng Y. B., Yang H., Yang X. L., Liu G., Zhao Y. L., Chen H. B., ACS Nano, 2017, 11(2), 1848—1857 |
140 | Li X., Lee S., Yoon J., Chem. Soc. Rev., 2018, 47(4), 1174—1188 |
141 | Shen L. J., Zhou T. J., Fan Y. T., Chang X., Wang Y., Sun J. G., Xing L., Jiang H. L., Chin. Chem. Lett., 2020, 31(7), 1709—1716 |
142 | Qian C. G., Yu J. C., Chen Y. L., Hu Q. Y., Xiao X. Z., Sun W. J., Wang C., Feng P. J., Shen Q. D., Gu Z., Adv. Mater., 2016, 28(17), 3226 |
143 | Juarranz Á., Jaén P., Sanz⁃Rodríguez F., Cuevas J., González S., Clin. Transl. Oncol., 2008, 10(3), 148—154 |
144 | Agostinis P., Berg K., Cengel K. A., Foster T. H., Girotti A. W., Gollnick S. O., Hahn S. M., Hamblin M. R., Juzeniene A., Kessel D., Korbelik M., Moan J., Mroz P., Nowis D., Piette J., Wilson B. C., Golab J., CA Cancer J. Clin., 2011, 61(4), 250—281 |
145 | He S., Song J., Qu J., Cheng Z., Chem. Soc. Rev., 2018, 47(12), 4258—4278 |
146 | Wang P., Wang X., Luo Q., Li Y., Lin X., Fan L., Zhang Y., Liu J., Liu X., Theranostics, 2019, 9(2), 369—380 |
147 | Zhang H., Wang T., Liu H., Ren F., Qiu W., Sun Q., Yan F., Zheng H., Li Z., Gao M., Nanoscale, 2019, 11(16), 7600—7608 |
148 | Vijayaraghavan P., Liu C. H., Vankayala R., Chiang C. S., Hwang K. C., Adv. Mater., 2014, 26(39), 6689—6695 |
149 | Gao S., Yu S., Zhang Y. M., Wu A. H., Zhang S. H., Wei G. G., Wang H., Xiao Z. Y., Lu W., Adv. Funct. Mater., 2021, 31(14), 2008356 |
1 | Zhai Y., Su J., Ran W., Zhang P., Yin Q., Zhang Z., Yu H., Li Y., Theranostics, 2017, 7(10), 2575—2592 |
2 | Liang Y., Zhang H., Song X., Yang Q., Semin. Cancer Biol., 2020, 60, 14—27 |
3 | Chen L. L., Zhao L., Wang Z. G., Liu S. L., Pang D. W., Small, 2022, 18(8), e2104567 |
4 | Egloff⁃Juras C., Bezdetnaya L., Dolivet G., Lassalle H. P., Int. J. Nanomed., 2019, 14, 7823—7838 |
5 | Weissleder R., Schwaiger M. C., Gambhir S. S., Hricak H., Sci. Transl. Med., 2016, 8(355), 355ps16 |
6 | Toussaint J. F., Lamuraglia G. M., Southern J. F., Fuster V., Kantor H. L., Circulation, 1996, 94(5), 932—938 |
7 | Paulus M. J., Gleason S. S., Kennel S. J., Hunsicker P. R., Johnson D. K., Neoplasia, 2000, 2(1/2), 62—70 |
8 | Miao Q., Pu K., Adv. Mater., 2018, 30(49), e1801778 |
9 | Hong G. S., Antaris A. L., Dai H. J., Nat. Biomed. Eng., 2017, 1(1), 0010 |
10 | Li C., Wang Q., ACS Nano, 2018, 12(10), 9654—9659 |
11 | Wu D., Sedgwick A. C., Gunnlaugsson T., Akkaya E. U., Yoon J., James T. D., Chem. Soc. Rev., 2017, 46(23), 7105—7123 |
12 | Wang S., Ren W. X., Hou J. T., Won M., An J., Chen X. Y., Shu J., Kim J. S., Chem. Soc. Rev., 2021, 50(16), 8887—8902 |
13 | Zhu S., Tian R., Antaris A. L., Chen X., Dai H., Adv. Mater., 2019, 31(24), e1900321 |
14 | Cao J., Zhu B., Zheng K., He S., Meng L., Song J., Yang H., Front. Bioeng. Biotechnol., 2019, 7, 487 |
15 | Owens E. A., Henary M., El Fakhri G., Choi H. S., Acc. Chem. Res., 2016, 49(9), 1731—1740 |
16 | Welsher K., Liu Z., Sherlock S. P., Robinson J. T., Chen Z., Daranciang D., Dai H., Nat. Nanotechnol., 2009, 4(11), 773—780 |
17 | Smith A. M., Mancini M. C., Nie S., Nat. Nanotechnol., 2009, 4(11), 710—711 |
18 | Diao S., Hong G. S., Antaris A. L., Blackburn J. L., Cheng K., Cheng Z., Dai H. J., Nano Res., 2015, 8(9), 3027—3034 |
19 | Zhang P., Wu Q., Yang J., Hou M., Zheng B., Xu J., Chai Y., Xiong L., Zhang C., Acta Biomater., 2022, 146, 450—464 |
20 | Hu Z. H., Fang C., Li B., Zhang Z. Y., Cao C. G., Cai M. S., Su S., Sun X. W., Shi X. J., Li C., Zhou T. J., Zhang Y. X., Chi C. W., He P., Xia X. M., Chen Y., Gambhir S. S., Cheng Z., Tian J., Nat. Biomed. Eng., 2020, 4(3), 259—271 |
21 | Choi H. S., Kim H. K., Nat. Biomed. Eng., 2020, 4(3), 245—246 |
22 | Sun C., Li B., Zhao M., Wang S., Lei Z., Lu L., Zhang H., Feng L., Dou C., Yin D., Xu H., Cheng Y., Zhang F., J. Am. Chem. Soc., 2019, 141(49), 19221—19225 |
23 | Li Y., Liu Y., Li Q., Zeng X., Xiao Y., Chem. Sci., 2020, 11(10), 2621—2626 |
24 | Li Q. Q., Ding Q. H., Li Y., Zeng X. D., Liu Y. S., Lu S. Y., Zhou H., Wang X. F., Wu J. Z., Meng X. L., Chem. Commun., 2020, 56(22), 3289—3292 |
25 | Li C. Y., Chen G. C., Zhang Y. J., Wu F., Wang Q. B., J. Am. Chem. Soc., 2020, 142(35), 14789—14804 |
150 | Li L. Y., Zeng Z. H., Chen Z. X., Gao R. Y., Pan L. T., Deng J. J., Ye X. H., Zhang J., Zhang S. J., Mei C. Y., Yu J. J., Feng Y. F., Wang Q. M., Yu A. Y., Yang M., Huang J. H., ACS Nano, 2020, 14(11), 15403—15416 |
151 | Li Y., Lin J. Y., Wang P. Y., Luo Q., Lin H. R., Zhang Y., Hou Z. Q., Liu J. F., Liu X. L., ACS Nano, 2019, 13(11), 12912—12928 |
152 | Zhao P. H., Jin Z. K., Chen Q., Yang T., Chen D. Y., Meng J. F., Lu X., Gu Z., He Q. J., Nat. Commun., 2018, 9(1), 4241 |
153 | Liu Q., Tian J. W., Tian Y., Sun Q. C., Sun D., Wang F. F., Xu H. J., Ying G. L., Wang J. G., Yetisen A. K., Jiang N., ACS Nano, 2021, 15(1), 515—525 |
154 | Li L., Yang Z., Zhu S., He L., Fan W., Tang W., Zou J., Shen Z., Zhang M., Tang L., Dai Y., Niu G., Hu S., Chen X., Adv. Mater., 2019, 31(21), e1901187 |
155 | Ding Y., Du C., Qian J., Dong C. M., Nano Lett., 2019, 19(7), 4362—4370 |
156 | Shi B., Ren N., Gu L. Y., Xu G., Wang R. C., Zhu T. L., Zhu Y., Fan C. H., Zhao C. C., Tian H., Angew. Chem. Int. Ed., 2019, 58(47), 16826—16830 |
157 | Sun P. F., Jiang X. Y., Sun B., Wang H., Li J. W., Fan Q. L., Huang W., Biomaterials, 2022, 280, 121319 |
158 | Lu Y., Aimetti A. A., Langer R., Gu Z., Nat. Rev. Mater., 2016, 2(1), 16075 |
26 | Li Y., Cai Z., Liu S., Zhang H., Wong S. T. H., Lam J. W. Y., Kwok R. T. K., Qian J., Tang B. Z., Nat. Commun., 2020, 11(1), 1255 |
27 | Tanzid M., Hogan N. J., Sobhani A., Robatjazi H., Pediredla A. K., Samaniego A., Veeraraghavan A., Halas N. J., ACS Photonics, 2016, 3(10), 1787—1793 |
28 | Feng Z., Tang T., Wu T., Yu X., Zhang Y., Wang M., Zheng J., Ying Y., Chen S., Zhou J., Fan X., Zhang D., Li S., Zhang M., Qian J., Light Sci. Appl., 2021, 10(1), 197 |
29 | Wang F., Ren F., Ma Z., Qu L., Gourgues R., Xu C., Baghdasaryan A., Li J., Zadeh I. E., Los J. W. N., Fognini A., Qin⁃Dregely J., Dai H., Nat. Nanotechnol., 2022, 17(6), 653—660 |
30 | Fan Y., Wang P., Lu Y., Wang R., Zhou L., Zheng X., Li X., Piper J. A., Zhang F., Nat. Nanotechnol., 2018, 13(10), 941—946 |
31 | Huang D. H., Lin S. Y., Wang Q. W., Zhang Y. J., Li C. Y., Ji R., Wang M., Chen G. C., Wang Q. B., Adv. Funct. Mater., 2019, 29(2), 1806546 |
32 | Koman V. B., Bakh N. A., Jin X., Nguyen F. T., Son M., Kozawa D., Lee M. A., Bisker G., Dong J., Strano M. S., Nat. Nanotechnol., 2022, 17(6), 643—652 |
33 | Tsien R. Y., Nat. Rev. Mol. Cell Biol., 2003, Suppl, SS16—SS21 |
34 | Mariani G., Moresco L., Viale G., Villa G., Bagnasco M., Canavese G., Buscombe J., Strauss H. W., Paganelli G., J. Nucl. Med., 2001, 42(8), 1198—1215 |
35 | Paulus M. J., Gleason S. S., Kennel S. J., Hunsicker P. R., Johnson D. K., Neoplasia, 2000, 2(1), 62—70 |
36 | Weissleder R., Pittet M. J., Nature, 2008, 452(7187), 580—589 |
37 | Bashkatov A. N., Genina E. A., Tuchin V. V., J. Innovative Opt. Health Sci., 2011, 4, 9—38 |
38 | Gong L., Shan X., Zhao X. H., Tang L., Zhang X. B., ChemMedChem, 2021, 16(16), 2426—2440 |
39 | Cai Y., Wei Z., Song C. H., Tang C. C., Han W., Dong X. C., Chem. Soc. Rev., 2019, 48(1), 22—37 |
40 | Dahal D., Ray P., Pan D., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(6), e1734 |
41 | Diao S., Hong G., Robinson J. T., Jiao L., Antaris A. L., Wu J. Z., Choi C. L., Dai H., J. Am. Chem. Soc., 2012, 134(41), 16971—16974 |
42 | Ju S. Y., Kopcha W. P., Papadimitrakopoulos F., Science, 2009, 323(5919), 1319—1323 |
43 | Liu Y., Li Y., Koo S., Sun Y., Liu Y., Liu X., Pan Y., Zhang Z., Du M., Lu S., Qiao X., Gao J., Wang X., Deng Z., Meng X., Xiao Y., Kim J. S., Hong X., Chem. Rev., 2022, 122(1), 209—268 |
44 | Lee A. J., Wang X., Carlson L. J., Smyder J. A., Loesch B., Tu X., Zheng M., Krauss T. D., Nano Lett., 2011, 11(4), 1636—1640 |
45 | Takeuchi T., Iizumi Y., Yudasaka M., Kizaka⁃Kondoh S., Okazaki T., Bioconjugate Chem., 2019, 30(5), 1323—1330 |
46 | Xhyliu F., Ao G., Carbon, 2020, 167, 601—608 |
47 | Diao S., Blackburn J. L., Hong G., Antaris A. L., Chang J., Wu J. Z., Zhang B., Cheng K., Kuo C. J., Dai H., Angew. Chem. Int. Ed. Engl., 2015, 54(49), 14758—14762 |
48 | Iizumi Y., Yudasaka M., Kim J., Sakakita H., Takeuchi T., Okazaki T., Sci. Rep., 2018, 8(1), 6272 |
49 | Bhattacharya S., Gong X., Wang E., Dutta S. K., Caplette J. R., Son M., Nguyen F. T., Strano M. S., Mukhopadhyay D., Cancer Res., 2019, 79(17), 4515—4523 |
50 | Yang F., Zhang Q. Z., Huang S. Y., Ma D. L., J. Mater. Chem. B, 2020, 8(35), 7856—7879 |
51 | Chinnathambi S., Shirahata N., Sci. Technol. Adv. Mater., 2019, 20(1), 337—355 |
52 | Lu F., Gong Y., Ju W. W., Cheng F., Zhang K. W., Wang Q., Wang W. J., Zhong J. B., Fan Q. L., Huang W., Inorg. Chem. Commun., 2019, 106, 233—239 |
53 | Awasthi P., An X., Xiang J., Kalva N., Shen Y., Li C., Nanoscale, 2020, 12(9), 5678—5684 |
54 | Zhang J. J., Lin Y., Zhou H., He H., Ma J. J., Luo M. Y., Zhang Z. L., Pang D. W., Adv. Healthcare Mater., 2019, 8(14), e1900341 |
55 | Jeong S., Song J., Lee W., Ryu Y. M., Jung Y., Kim S. Y., Kim K., Hong S. C., Myung S. J., Kim S., Nano Lett., 2017, 17(3), 1378—1386 |
56 | Deng Z. M., Jiang M. Y., Li Y. B., Liu H. R., Zeng S. J., Hao J. H., iScience, 2019, 17, 217—224 |
57 | Lian W., Tu D. T., Hu P., Song X. R., Gong Z. L., Chen T., Song J. B., Chen Z., Chen X. Y., Nano Today, 2020, 35, 100943 |
58 | Zhang Z., Yang Y., Zhao M., Lu L., Zhang F., Fan Y., ACS Appl. Bio. Mater., 2022, 5(6), 2935—2942 |
59 | Zhang X., He S. Q., Ding B. B., Qu C. R., Zhang Q., Chen H., Sun Y., Fang H. Y., Long Y., Zhang R. P., Lan X. L., Cheng Z., Chem. Eng. J., 2020, 385, 123959 |
60 | Liu T. M., Conde J., Lipiński T., Bednarkiewicz A., Huang C. C., NPG Asia Mater., 2016, 8(8), e295 |
61 | Yu Z., Eich C., Cruz L. J., Front. Chem., 2020, 8, 496 |
62 | Qu Z., Shen J., Li Q., Xu F., Wang F., Zhang X., Fan C., Theranostics, 2020, 10(6), 2631—2644 |
63 | Li X., Jiang M., Li Y., Xue Z., Zeng S., Liu H., Mater. Sci. Eng. C: Mater., 2019, 100, 260—268 |
64 | Xue Z., Zeng S., Hao J., Biomaterials, 2018, 171, 153—163 |
65 | Li Y., Zeng S., Hao J., ACS Nano, 2019, 13(1), 248—259 |
66 | Kantamneni H., Zevon M., Donzanti M. J., Zhao X., Sheng Y., Barkund S. R., Mccabe L. H., Banach⁃Petrosky W., Higgins L. M., Ganesan S., Riman R. E., Roth C. M., Tan M. C., Pierce M. C., Ganapathy V., Moghe P. V., Nat. Biomed. Eng., 2017, 1, 993—1003 |
67 | Zhong Y., Ma Z., Zhu S., Yue J., Zhang M., Antaris A. L., Yuan J., Cui R., Wan H., Zhou Y., Wang W., Huang N. F., Luo J., Hu Z., Dai H., Nat. Commun., 2017, 8(1), 737 |
68 | Wang P., Fan Y., Lu L., Liu L., Fan L., Zhao M., Xie Y., Xu C., Zhang F., Nat. Commun., 2018, 9(1), 2898 |
69 | Zhao M., Li B., Wang P., Lu L., Zhang Z., Liu L., Wang S., Li D., Wang R., Zhang F., Adv. Mater., 2018, 30(52), e1804982 |
70 | Li D., He S., Wu Y., Liu J., Liu Q., Chang B., Zhang Q., Xiang Z., Yuan Y., Jian C., Yu A., Cheng Z., Adv. Sci., 2019, 6(23), 1902042 |
71 | Sy M., Nonat A., Hildebrandt N., Charbonnière L. J., Chem. Commun., 2016, 52(29), 5080—5095 |
72 | Wang T., Wang S., Liu Z., He Z., Yu P., Zhao M., Zhang H., Lu L., Wang Z., Wang Z., Zhang W., Fan Y., Sun C., Zhao D., Liu W., Bünzli J. G., Zhang F., Nat. Mater., 2021, 20(11), 1571—1578 |
73 | Ning Y., Cheng S., Wang J. X., Liu Y. W., Feng W., Li F., Zhang J. L., Chem. Sci., 2019, 10(15), 4227—4235 |
74 | Ning Y., Chen S., Chen H., Wang J. X., He S., Liu Y. W., Cheng Z., Zhang J. L., Inorg. Chem. Front., 2019, 6(8), 1962—1967 |
75 | Li D. L., Liu Q., Qi Q. R., Shi H., Hsu E. C., Chen W. Y., Yuan W. L., Wu Y. F., Lin S. E., Zeng Y. T., Xiao Z. Y., Xu L. Y., Zhang Y. R., Stoyanova T., Jia W., Cheng Z., Small, 2020, 16(43), 2003851 |
76 | Liu H., Hong G., Luo Z., Chen J., Chang J., Gong M., He H., Yang J., Yuan X., Li L., Mu X., Wang J., Mi W., Luo J., Xie J., Zhang X. D., Adv. Mater., 2019, 31(46), e1901015 |
[1] | 杨霁野, 孙大吟, 王妍, 谷安祺, 叶一兰, 丁书江, 杨振忠. 若干典型中空结构材料的模板合成与应用进展[J]. 高等学校化学学报, 2023, 44(1): 20220665. |
[2] | 王慧, 赵德偲, 杨乃亮, 王丹. 智能中空药物载体的门控设计[J]. 高等学校化学学报, 2023, 44(1): 20220237. |
[3] | 仵宇帅, 尚颖旭, 蒋乔, 丁宝全. 可控自组装DNA折纸结构作为药物载体的研究进展[J]. 高等学校化学学报, 2022, 43(8): 20220179. |
[4] | 陈尚钰, 沈清明, 孙鹏飞, 范曲立. 小分子基温敏聚合物纳米粒子的制备及在近红外二区荧光成像与光热治疗中的应用[J]. 高等学校化学学报, 2022, 43(12): 20220392. |
[5] | 赵雪琪, 赵越, 薛静, 白敏, 陈锋, 孙颖, 宋大千, 赵永席. 单细胞核酸编码扩增成像分析[J]. 高等学校化学学报, 2022, 43(12): 20220572. |
[6] | 张钤, 刘雅薇, 王帆, 刘凯, 张洪杰. 稀土纳米材料在高分辨活体成像及诊疗中的应用[J]. 高等学校化学学报, 2022, 43(12): 20220552. |
[7] | 马小飞, 胡山, 李俊彬, 杨盛, 谌委菊, 卿志和, 周怡波, 杨荣华. 细胞内源性分子辅助荧光信号放大策略及细胞成像[J]. 高等学校化学学报, 2022, 43(12): 20220320. |
[8] | 常通航, 程震. 整合荧光成像和化疗的有机小分子诊疗探针的研究进展[J]. 高等学校化学学报, 2022, 43(12): 20220430. |
[9] | 储彬彬, 何耀. 硅基纳米探针用于眼部疾病的成像检测与治疗[J]. 高等学校化学学报, 2022, 43(12): 20220546. |
[10] | 刘苗, 刘瑞波, 刘巴蒂, 钱鹰. 溶酶体靶向吲哚氟硼二吡咯光敏剂的合成、 双光子荧光成像及光动力治疗[J]. 高等学校化学学报, 2022, 43(10): 20220326. |
[11] | 陈宏达, 张婳, 王振新. 用于小动物活体的荧光-光热双模成像系统[J]. 高等学校化学学报, 2021, 42(3): 725. |
[12] | 陆峰, 贡祎, 赵婷, 赵宁, 琚雯雯, 范曲立, 黄维. 二元混合表面活性剂用于窄吸收金纳米棒的无种子合成[J]. 高等学校化学学报, 2021, 42(3): 700. |
[13] | 王萌萌, 栾天骄, 杨铭焱, 吕佳佳, 高杰, 李洪玉, 卫钢, 袁泽利. 肿瘤乏氧靶向响应的罗丹明荧光探针及其成像介导手术治疗[J]. 高等学校化学学报, 2021, 42(10): 3071. |
[14] | 任玉双, 郭园园, 刘学怡, 宋杰, 张川. 顺铂前药接枝修饰硫代DNA及其自组装靶向纳米药物研究[J]. 高等学校化学学报, 2020, 41(8): 1721. |
[15] | 张开翔, 刘军杰, 宋巧丽, 王丹钰, 史进进, 张海悦, 李景虹. 基于DNA纳米花的细胞自噬基因沉默用于增敏抗肿瘤化疗[J]. 高等学校化学学报, 2020, 41(7): 1461. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||