高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (1): 101.doi: 10.7503/cjcu20200410
所属专题: 分子筛功能材料 2021年,42卷,第1期
闻嘉丽,张钧豪,姜久兴
收稿日期:
2020-07-01
出版日期:
2021-01-10
发布日期:
2021-01-12
基金资助:
WEN Jiali, ZHANG Junhao, JIANG Jiuxing()
Received:
2020-07-01
Online:
2021-01-10
Published:
2021-01-12
Contact:
JIANG Jiuxing
E-mail:jiangjiux@mail.sysu.edu.cn
Supported by:
摘要:
沸石分子筛是一类重要的具有明确孔道结构以及催化位点的结晶孔材料. 但是由于其微孔开口的本质限制了其在大分子吸附与转化方面的应用. 10年前, 西班牙ITQ研究所的Corma教授、 吉林大学于吉红教授以及本文通讯作者发表了一篇关于超大孔分子筛的历史回顾文章. 该文从超大孔分子筛的合成、 结构、 假想结构以及催化性能等方面进行了综述. 这一类材料填补了传统沸石分子筛和有序介孔材料之间的孔径缺口. 在最近10年中, 多种新型超大孔分子筛以及新颖的合成方法陆续被报道. 本文对该方向近10年中的研究进行了综合评述.
中图分类号:
TrendMD:
闻嘉丽, 张钧豪, 姜久兴. 超大孔分子筛, 十年再回顾. 高等学校化学学报, 2021, 42(1): 101.
WEN Jiali, ZHANG Junhao, JIANG Jiuxing. Extra-large Pore Zeolites: a Ten-year Updated Review. Chem. J. Chinese Universities, 2021, 42(1): 101.
Structure code | Type of material | Finding year | Channel dimension | Framework composition | Framework density/(T?atom/nm3) | OSDA | Ref. |
---|---|---|---|---|---|---|---|
VFI | VPI?5 | 1988 | 1D 18?ring | Al, P | 14.5 | 1?1,1?2 | [ |
AET | AlPO?8 | 1990 | 1D 14?ring | Al, P | 18.2 | 1?2 | [ |
?CLO | Cloverite | 1991 | 3D 20?ring | Ga, P | 11.1 | 1?3 | [ |
DON | UTD?1 | 1996 | 1D 14?ring | Si | 17.1 | 1?4 | [ |
CFI | CIT?5 | 1997 | 1D 14?ring | Si | 16.8 | 1?5 | [ |
SFH | SSZ?53 | 2003 | 1D 14?ring | B, Si | 16.5 | 1?6 | [ |
SFN | SSZ?59 | 2003 | 1D 14?ring | B, Si | 16.6 | 1?7 | [ |
OSO | OSB?1 | 2001 | 3D 14×8×8?ring | Be, Si | 13.3 | K+ | [ |
ETR | ECR?34 | 2003 | 3D 18×8×8?ring | Ga(Al), Si | 15.4 | 1?8 | [ |
UTL | IM?12 or ITQ?15 | 2004 | 2D 14×12?ring | Ge, Si | 15.6 | 1?9,1?10 | [ |
ITT | ITQ?33 | 2006 | 3D 18×10×10?ring | Ge, Si | 12.3 | 1?11 | [ |
?ITV | ITQ?37 | 2009 | 3D 30?ring | Ge, Si | 10.3 | 1?12 | [ |
?IRY | ITQ?40 | 2010 | 3D 16×15×15?ring | Ge, Si | 11.1 | 1?13 | [ |
IRR | ITQ?44 | 2010 | 3D 18×12×12?ring | Ge, Si | 11.8 | 1?14 | [ |
ITQ?43 | 2011 | 3D 28×12×12?ring | Ge, Si | 11.4 | 1?14 | [ | |
IFO | ITQ?51 | 2013 | 1D 16?ring | Al, P | 17.3 | 1?15 | [ |
NUD?1 | 2014 | 3D 18×12×10?ring | Ge, Si | 11.8 | 1?16 | [ | |
IPC?7 | 2014 | 3D 14×12×10?ring | Ge, Si | — | — | [ | |
*?SSO | SSZ?61 | 2014 | 1D 18?ring | Si | 16.7 | 1?17 | [ |
*?EWT | EMM?23 | 2014 | 3D 21×10?ring | Si | 14.5 | 1?18 | [ |
?IFT | ITQ?53 | 2015 | 3D 14×14×14?ring | Ge, Si | 11.6 | 1?19 | [ |
?IFU | ITQ?54 | 2015 | 3D 20×14×12?ring | Ge, Si | 12.1 | 1?20 | [ |
GeZA | 2015 | 3D 15×14×12?ring | Ge, Si | 12.0 | 1?21 | [ | |
*?SVY | SSZ?70 | 2017 | 2D 14×10?ring | Si | 16.3 | 1?22 | [ |
?SYT | SYSU?3 | 2018 | 3D 24×8×8?ring | Ge, Si | 12.2 | 1?23 | [ |
ECNU?9 | 2018 | 2D 14×12?ring | Al, Si | 16.0 | — | [ | |
NUD?6 | 2020 | 3D 16×8×8?ring | Si | 12.0 | 24 | [ | |
IDM?1 | 2020 | Si | 25 | [ |
Table 1 List of ELP zeolites
Structure code | Type of material | Finding year | Channel dimension | Framework composition | Framework density/(T?atom/nm3) | OSDA | Ref. |
---|---|---|---|---|---|---|---|
VFI | VPI?5 | 1988 | 1D 18?ring | Al, P | 14.5 | 1?1,1?2 | [ |
AET | AlPO?8 | 1990 | 1D 14?ring | Al, P | 18.2 | 1?2 | [ |
?CLO | Cloverite | 1991 | 3D 20?ring | Ga, P | 11.1 | 1?3 | [ |
DON | UTD?1 | 1996 | 1D 14?ring | Si | 17.1 | 1?4 | [ |
CFI | CIT?5 | 1997 | 1D 14?ring | Si | 16.8 | 1?5 | [ |
SFH | SSZ?53 | 2003 | 1D 14?ring | B, Si | 16.5 | 1?6 | [ |
SFN | SSZ?59 | 2003 | 1D 14?ring | B, Si | 16.6 | 1?7 | [ |
OSO | OSB?1 | 2001 | 3D 14×8×8?ring | Be, Si | 13.3 | K+ | [ |
ETR | ECR?34 | 2003 | 3D 18×8×8?ring | Ga(Al), Si | 15.4 | 1?8 | [ |
UTL | IM?12 or ITQ?15 | 2004 | 2D 14×12?ring | Ge, Si | 15.6 | 1?9,1?10 | [ |
ITT | ITQ?33 | 2006 | 3D 18×10×10?ring | Ge, Si | 12.3 | 1?11 | [ |
?ITV | ITQ?37 | 2009 | 3D 30?ring | Ge, Si | 10.3 | 1?12 | [ |
?IRY | ITQ?40 | 2010 | 3D 16×15×15?ring | Ge, Si | 11.1 | 1?13 | [ |
IRR | ITQ?44 | 2010 | 3D 18×12×12?ring | Ge, Si | 11.8 | 1?14 | [ |
ITQ?43 | 2011 | 3D 28×12×12?ring | Ge, Si | 11.4 | 1?14 | [ | |
IFO | ITQ?51 | 2013 | 1D 16?ring | Al, P | 17.3 | 1?15 | [ |
NUD?1 | 2014 | 3D 18×12×10?ring | Ge, Si | 11.8 | 1?16 | [ | |
IPC?7 | 2014 | 3D 14×12×10?ring | Ge, Si | — | — | [ | |
*?SSO | SSZ?61 | 2014 | 1D 18?ring | Si | 16.7 | 1?17 | [ |
*?EWT | EMM?23 | 2014 | 3D 21×10?ring | Si | 14.5 | 1?18 | [ |
?IFT | ITQ?53 | 2015 | 3D 14×14×14?ring | Ge, Si | 11.6 | 1?19 | [ |
?IFU | ITQ?54 | 2015 | 3D 20×14×12?ring | Ge, Si | 12.1 | 1?20 | [ |
GeZA | 2015 | 3D 15×14×12?ring | Ge, Si | 12.0 | 1?21 | [ | |
*?SVY | SSZ?70 | 2017 | 2D 14×10?ring | Si | 16.3 | 1?22 | [ |
?SYT | SYSU?3 | 2018 | 3D 24×8×8?ring | Ge, Si | 12.2 | 1?23 | [ |
ECNU?9 | 2018 | 2D 14×12?ring | Al, Si | 16.0 | — | [ | |
NUD?6 | 2020 | 3D 16×8×8?ring | Si | 12.0 | 24 | [ | |
IDM?1 | 2020 | Si | 25 | [ |
Name | IZA code | Framework composition | Year | OSDA* | Pore opening | Ref. |
---|---|---|---|---|---|---|
IM?12 | UTL | |(C11H22N)4(H2O;OH)16|[Ge13.8 Si62.2 O152 ] | 2004 | 3?1 | 14 | [ |
ITQ?15 | [Ge?Si?O]?UTL | 2004 | 3?2 | [ | ||
ITQ?15 | [Ge?Si?O]?UTL | 2011 | 3?3 | [ | ||
UTL?DBU | [Ge?Si?O]?UTL | 2020 | 3?4 | [ | ||
UTL | [Ge?Si?O]?UTL | 2008 | 3?1 | [ | ||
ITQ?44 | IRR | [Si34.3Ge17.7O104]?IRR | 2010 | 3?3 | 18 | [ |
ITQ?44 | [Ge?Si?O]?IRR | 2011 | 3?5 | [ | ||
ITQ?44 | |(C13H22N)17|[Ge100Si200O600F17] | 2015 | 3?6 | [ | ||
TEA?ITQ?44 | |(C8H20N)5.95(OH)2.95|(Si11Ge33.33Al7.67O104F3)H7.67 | 2016 | 3?7 | [ | ||
TPA?ITQ?44 | |(C12H28N)2.60|(Si11.71Ge32.54Al7.75O104F3)H8.16 | 2016 | 3?8 | [ | ||
ITQ?44 | [Ge?Si?O]?IRR | 2019 | 3?8, 3?9 | [ | ||
Cloverite | ?CLO | |(C7H13N)248|8[Ga96P96O372(OH)24]8 | 1991 | 3?10 | 20 | [ |
PKU?12 | |(C9H22N)24(H2O)96|(Si0.45Ge0.55)192O372(OH)24F24 | 2013 | 3?11 | [ | ||
Zn?/Mn?CLO | [Mn/Zn?Ga?P?O]?CLO | 2002 | 3?10 | [ | ||
DNL?1 | |(C6N2H18)104 ?(C6N2H11)80(H2O)910|[Al768P768O2976(OH)192F288 ] | 2010 | 3?12, 3?13 | [ | ||
DNL?1 | [Al?P?O]?CLO | 2015 | 3?14, 3?15 | [ | ||
?CLO | [Al?P?O]?CLO | 2020 | 3?14, 3?15 | [ | ||
MAS?ITQ?43 | — | |(C16H29N2)3.7(H2O)5|[Ge11Si18.7O62.1H5.4F3.7] | 2019 | 3?16 | 28 | [ |
ITQ?43 | [Si0.69Ge0.31O2 ] | 2011 | 3?3 | [ | ||
UTD?1 | DON | |((Cp*)2Co)2 F1.5(OH)0.5|[Si64O128] | 1997 | 3?17 | 14 | [ |
NUD?5 | [C10H14N2O33Si16 ] | 2019 | 3?18 | [ | ||
EMM?23 | ?*EWT | |(C19H40N2)3|[Si64O116(OH)24] | 2014 | 3?20 | 21 | [ |
RZM?3 | |(C14H32N2·6)3.7H2O|[(Na1·8Al1·3Si62·7O140)] | 2019 | 3?21 | [ | ||
ITQ?37 | ?ITV | |(C22N2H40)(H2O) 10.5|[Ge80Si112O400H32F20] | 2009 | 3?22 | 30 | [ |
ITQ?37 | [Ge?Si?O]?ITV | 2012 | 3?23 | [ | ||
MAS?ITQ?37 | |(C16H29N2)20(H2O)30|[Ge80Si112O400H32F20] | 2019 | 3?16 | [ | ||
ITQ?37 | |(C24N6H33F3)8.81 |[Ge96Si96O400H32] | 2016 | 3?24 | [ | ||
NUD?2 | *CTH | |(C12H15N2)(C12H15N2F)1.20 |[Ge4Si28O64F] | 2016 | 3?25 | 14 | [ |
SAZ?1 | [Ge?Si?O]?*CTH | 2017 | 3?26 | [ | ||
CIT?13 | |(C13N2)3.30F2|[Si54.34Ge9.66O128] | 2016 | 3?27, 3?28 | [ | ||
ITQ?33 | ITT | |(C12H30N2)0.07F0.07(H2O)0.37| [Si0.66Al0.04Ge0.30O2.02 ] | 2006 | 3?29 | 18 | [ |
TBA?ITQ?33 | |(C16H36N)2.19|[H2.62(Si24.01Ge20.18Al1.81O92F3)] | 2016 | 3?30 | [ | ||
NUD?1 | — | |(C15N2H15F)7.69(C15N2H15OH)2|[Ge47.81Si50.19O196] | 2014 | 3?31, 3?32 | 18 | [ |
TPA?NUD?1 | |(C12H28N)3.04(OH)0.04|[H11.86(Si20.18Ge16.96Al11.86O98F3)] | 2016 | 3?8 | [ | ||
TBA?NUD?1 | |(C16H36N)1.13| [(Si24.66Ge20.55Al3.78O98F3)H5.65 ] | 2016 | 3?30 | [ | ||
Name | IZA code | Framework composition | Year | OSDA* | Pore opening | Ref. |
VPI?5 | VFI | [Al18P18O72]?VFI | 1988 | 3?31 | 18 | [ |
VPI?5 | [Al?Si?P?O]?VFI | 1989 | 3?32 | [ | ||
VPI?5 | [Al?P?O]?VFI | 2015 | 3?33 | [ | ||
ECNU?5 | *?SVY | [SiO1.986(OH)0.028] | 2015 | 3?34 | 14 | [ |
SSZ?70 | — | 2017 | 3?35 | [ |
Table 2 Alternative synthesis of ELP zeolites
Name | IZA code | Framework composition | Year | OSDA* | Pore opening | Ref. |
---|---|---|---|---|---|---|
IM?12 | UTL | |(C11H22N)4(H2O;OH)16|[Ge13.8 Si62.2 O152 ] | 2004 | 3?1 | 14 | [ |
ITQ?15 | [Ge?Si?O]?UTL | 2004 | 3?2 | [ | ||
ITQ?15 | [Ge?Si?O]?UTL | 2011 | 3?3 | [ | ||
UTL?DBU | [Ge?Si?O]?UTL | 2020 | 3?4 | [ | ||
UTL | [Ge?Si?O]?UTL | 2008 | 3?1 | [ | ||
ITQ?44 | IRR | [Si34.3Ge17.7O104]?IRR | 2010 | 3?3 | 18 | [ |
ITQ?44 | [Ge?Si?O]?IRR | 2011 | 3?5 | [ | ||
ITQ?44 | |(C13H22N)17|[Ge100Si200O600F17] | 2015 | 3?6 | [ | ||
TEA?ITQ?44 | |(C8H20N)5.95(OH)2.95|(Si11Ge33.33Al7.67O104F3)H7.67 | 2016 | 3?7 | [ | ||
TPA?ITQ?44 | |(C12H28N)2.60|(Si11.71Ge32.54Al7.75O104F3)H8.16 | 2016 | 3?8 | [ | ||
ITQ?44 | [Ge?Si?O]?IRR | 2019 | 3?8, 3?9 | [ | ||
Cloverite | ?CLO | |(C7H13N)248|8[Ga96P96O372(OH)24]8 | 1991 | 3?10 | 20 | [ |
PKU?12 | |(C9H22N)24(H2O)96|(Si0.45Ge0.55)192O372(OH)24F24 | 2013 | 3?11 | [ | ||
Zn?/Mn?CLO | [Mn/Zn?Ga?P?O]?CLO | 2002 | 3?10 | [ | ||
DNL?1 | |(C6N2H18)104 ?(C6N2H11)80(H2O)910|[Al768P768O2976(OH)192F288 ] | 2010 | 3?12, 3?13 | [ | ||
DNL?1 | [Al?P?O]?CLO | 2015 | 3?14, 3?15 | [ | ||
?CLO | [Al?P?O]?CLO | 2020 | 3?14, 3?15 | [ | ||
MAS?ITQ?43 | — | |(C16H29N2)3.7(H2O)5|[Ge11Si18.7O62.1H5.4F3.7] | 2019 | 3?16 | 28 | [ |
ITQ?43 | [Si0.69Ge0.31O2 ] | 2011 | 3?3 | [ | ||
UTD?1 | DON | |((Cp*)2Co)2 F1.5(OH)0.5|[Si64O128] | 1997 | 3?17 | 14 | [ |
NUD?5 | [C10H14N2O33Si16 ] | 2019 | 3?18 | [ | ||
EMM?23 | ?*EWT | |(C19H40N2)3|[Si64O116(OH)24] | 2014 | 3?20 | 21 | [ |
RZM?3 | |(C14H32N2·6)3.7H2O|[(Na1·8Al1·3Si62·7O140)] | 2019 | 3?21 | [ | ||
ITQ?37 | ?ITV | |(C22N2H40)(H2O) 10.5|[Ge80Si112O400H32F20] | 2009 | 3?22 | 30 | [ |
ITQ?37 | [Ge?Si?O]?ITV | 2012 | 3?23 | [ | ||
MAS?ITQ?37 | |(C16H29N2)20(H2O)30|[Ge80Si112O400H32F20] | 2019 | 3?16 | [ | ||
ITQ?37 | |(C24N6H33F3)8.81 |[Ge96Si96O400H32] | 2016 | 3?24 | [ | ||
NUD?2 | *CTH | |(C12H15N2)(C12H15N2F)1.20 |[Ge4Si28O64F] | 2016 | 3?25 | 14 | [ |
SAZ?1 | [Ge?Si?O]?*CTH | 2017 | 3?26 | [ | ||
CIT?13 | |(C13N2)3.30F2|[Si54.34Ge9.66O128] | 2016 | 3?27, 3?28 | [ | ||
ITQ?33 | ITT | |(C12H30N2)0.07F0.07(H2O)0.37| [Si0.66Al0.04Ge0.30O2.02 ] | 2006 | 3?29 | 18 | [ |
TBA?ITQ?33 | |(C16H36N)2.19|[H2.62(Si24.01Ge20.18Al1.81O92F3)] | 2016 | 3?30 | [ | ||
NUD?1 | — | |(C15N2H15F)7.69(C15N2H15OH)2|[Ge47.81Si50.19O196] | 2014 | 3?31, 3?32 | 18 | [ |
TPA?NUD?1 | |(C12H28N)3.04(OH)0.04|[H11.86(Si20.18Ge16.96Al11.86O98F3)] | 2016 | 3?8 | [ | ||
TBA?NUD?1 | |(C16H36N)1.13| [(Si24.66Ge20.55Al3.78O98F3)H5.65 ] | 2016 | 3?30 | [ | ||
Name | IZA code | Framework composition | Year | OSDA* | Pore opening | Ref. |
VPI?5 | VFI | [Al18P18O72]?VFI | 1988 | 3?31 | 18 | [ |
VPI?5 | [Al?Si?P?O]?VFI | 1989 | 3?32 | [ | ||
VPI?5 | [Al?P?O]?VFI | 2015 | 3?33 | [ | ||
ECNU?5 | *?SVY | [SiO1.986(OH)0.028] | 2015 | 3?34 | 14 | [ |
SSZ?70 | — | 2017 | 3?35 | [ |
Name(Code) | Original OSDA | Alternative OSDA | ||||
---|---|---|---|---|---|---|
IM?12 (UTL) | 3?1 | 3?2 | 3?3 | 3?4 | ||
ITQ?44 (IRR) | 3?3 | 3?5 | 3?6 | 3?7 | 3?8 | 3?9 |
Cloverite (?CLO) | 3?10 | 3?11 | 3?12 | 3?13 | 3?14 | 3?15 |
ITQ?43 | 3?3 | 3?16 | ||||
UTD?1 (DON) | 3?17 | 3?18 | 3?19 | |||
EMM?23 (?*EWT) | 3?20 | 3?21 | ||||
ITQ?37 (?ITV) | 3?22 | 3?23 | ![]() | 3?16 | ||
CIT?13 (*CTH) | ![]() | ![]() | ![]() | ![]() | ||
ITQ?33 (ITT) | 3?29 | 3?30 | ||||
Name(Code) | Original OSDA | Alternative OSDA | ||||
NUD?1 | 3?31 | 3?32 | 3?8 | 3?30 | ||
VPI?5 | 3?31 | 3?32 | 3?33 | |||
SSZ?70 | 3?34 | 3?35 |
Table 3 Original and alternative OSDAs
Name(Code) | Original OSDA | Alternative OSDA | ||||
---|---|---|---|---|---|---|
IM?12 (UTL) | 3?1 | 3?2 | 3?3 | 3?4 | ||
ITQ?44 (IRR) | 3?3 | 3?5 | 3?6 | 3?7 | 3?8 | 3?9 |
Cloverite (?CLO) | 3?10 | 3?11 | 3?12 | 3?13 | 3?14 | 3?15 |
ITQ?43 | 3?3 | 3?16 | ||||
UTD?1 (DON) | 3?17 | 3?18 | 3?19 | |||
EMM?23 (?*EWT) | 3?20 | 3?21 | ||||
ITQ?37 (?ITV) | 3?22 | 3?23 | ![]() | 3?16 | ||
CIT?13 (*CTH) | ![]() | ![]() | ![]() | ![]() | ||
ITQ?33 (ITT) | 3?29 | 3?30 | ||||
Name(Code) | Original OSDA | Alternative OSDA | ||||
NUD?1 | 3?31 | 3?32 | 3?8 | 3?30 | ||
VPI?5 | 3?31 | 3?32 | 3?33 | |||
SSZ?70 | 3?34 | 3?35 |
Fig.7 Schematic of size expansion of piperidine derivative OSDAs and corresponding ELP zeolite(A) and phase diagram of the OSDAs in small amount of water(B)[7]Copyright 2011, American Chemical Society.
Fig.10 SYSU?3(?SYT) structure built by D4R and rpa?cages(A), connection of 8?ring cage column to form 24?ring main channel(B, C) and 24×8×8?ring channel system of SYSU?3(D)[32]Copyright 2018, Wiley-VCH Verlag GmbH & Co.
Fig.11 ADOR or inverse sigma transformation of UTL zeolite(A), rearrangement of MWW layer to form ECNU?5(B), interlayer expansion of PLS?3 to form ECNU?9(C) and topotactic transformations from CIT?13(D)
46 | Tao S., Li X., Wang X., Wei Y., Jia Y., Ju J., Cheng Y., Wang H., Gong S., Yao X., Gao H., Zhang C., Zang Q., Tian Z., Angew. Chem. Int. Ed., 2020, 59, 3455—3459 |
47 | Zhang C., Li X., Li X., Hu J., Zhu L., Li Y., Jiang J., Wang Z., Yang W., Chem. Commun., 2019, 55, 2753—2756 |
48 | Zi W. W., Gao Z., Zhang J., Lv J. H., Zhao B. X., Jiang Y. F., Du H. B., Chen F. J., Micropor. Mesopor. Mater., 2019, 290, 109654 |
49 | Wang Y., Zhu J., Sun M., Wang L., Yang J., Wu Q., Wang X., Liu C., Sun J., Mu X., Shu X., Micropor. Mesopor. Mater., 2019, 275, 87—94 |
50 | Qian K., Li J., Jiang J., Liang Z., Yu J., Xu R., Micropor. Mesopor. Mater., 2012, 164, 88—92 |
51 | Chen F. J., Gao Z. H., Liang L. L., Zhang J., Du H. B., CrystEngComm, 2016, 18, 2735—2741 |
52 | Gao Z. H., Chen F. J., Xu L., Sun L., Xu Y., Du H. B., Chem. Eur. J., 2016, 22, 14367—14372 |
53 | Firth D. S., Morris S. A., Wheatley P. S., Russell S. E., Slawin A. M. Z., Dawson D. M., Mayoral A., Opanasenko M., Položij M., Čejka J., Nachtigall P., Morris R. E., Chem. Mater., 2017, 29, 5605—5611 |
54 | Kang J. H., Xie D., Zones S. I., Smeets S., McCusker L. B., Davis M. E., Chem. Mater.,2016, 28, 6250—6259 |
55 | Derouane E. G., Maistriau L., Gabelica Z., Tuel A., Nagy J. B., Von Ballmoos R., App. Catal.,1989, 51, L13—L20 |
56 | Boal B. W., Zones S. I., Davis M. E., Micropor. Mesopor. Mater., 2015, 208, 203—211 |
57 | Xu L., Ji X. Y., Jiang J. G., Han L., Che S. A., Wu P., Chem. Mater., 2015, 27, 7852—7860 |
58 | Archer R. H., Zones S. I., Davis M. E., Micropor. Mesopor. Mater., 2010, 130, 255—265 |
59 | Shvets O. V., Kasian N., Zukal A., Pinkas J., Čejka J., Chem. Mater., 2010, 22, 3482—3495 |
60 | Davis M. E., Lobo R. F., Chem. Mater., 1992, 4, 756—768 |
61 | Nakagawa Y., Lee G. S., Harris T. V., Yuen L. T., Zones S. I., Micropor. Mesopor. Mater., 1998, 22, 69—85 |
62 | Zones S. I., Burton A. W., Lee G. S., Olmstead M. M., J. Am. Chem. Soc., 2007, 129, 9066—9079 |
63 | Balkus K. J., Biscotto M., Gabrielov A. G., Stud. Surf. Sci. Catal., 1997, 105, 415—421 |
64 | Dorset D. L., Weston S. C., Dhingra S. S., J. Phys. Chem. B, 2006, 110, 2045—2050 |
65 | Dorset D. L., Kennedy G. J., Strohmaier K. G., Diaz⁃Cabañas M. J., Rey F., Corma A., J. Am. Chem. Soc., 2006, 128, 8862—8867 |
66 | Wagner P., Nakagawa Y., Lee G. S., Davis M. E., Elomari S., Medrud R. C., Zones S. I., J. Am. Chem. Soc., 2000, 122, 263—273 |
67 | Zones S. I., Nakagawa Y., Lee G. S., Chen C. Y., Yuen L. T., Micropor. Mesopor. Mater., 1998, 21, 199—211 |
68 | Qiu J. Z., Wang L. F., Jiang J. X., Molecules, 2019, 24, 2972—2981 |
69 | Corma A., Rey F., Rius J., Sabater M. J., Valencia S., Nature, 2004, 431, 287—290 |
70 | Martinez⁃Franco R., Cantin A., Moliner M., Corma A., Chem. Mater., 2014, 26, 4346—4353 |
71 | Martinez⁃Franco R., Sun J., Sastre G., Yun Y., Zou X., Moliner M., Corma A., Proc. R. Soc. Math. Phys. Eng. Sci., 2014, 470, 20140107 |
72 | Paris C., Moliner M.; Ed.: GomezHortiguela L., Insights into the Chemistry of Organic Structure⁃Directing Agents in the Synthesis of Zeolitic Materials, Vol. 175, Springer, New York, 2018, 139—177 |
73 | Greg S. L., Stacey I. Z., J. Solid State Chem., 2002, 167, 289—298 |
74 | Wragg D. S., Morris R., Burton A. W., Zones S. I., Ong K., Lee G., Chem. Mater., 2007, 19, 3924—3932 |
75 | Zhang C., Yan Y., Huang Z., Shi H., Zhang C., Cao X., Jiang J., Inorg. Chem. Commun., 2018, 96, 165—169 |
76 | Freyhardt C. C., Tsapatsis M., Lobo R. F., Balkus K. J., Davis M. E., Nature, 1996, 381, 295—298 |
77 | Simancas R., Dari D., Velamazán N., Navarro M., Cantín A., Jordá J., Sastre G., Corma A., Rey F., Science, 2010, 330, 1219—1222 |
78 | Rey F., Simancas J.; Ed.: GomezHortiguela L., Insights into the Chemistry of Organic Structure⁃Directing Agents in the Synthesis of Zeolitic Materials, Vol. 175, Springer, New York, 2018, 103—138 |
79 | Barrer R. M., Villiger H., Z. Kristallogr, 1969, 128, 352—370 |
80 | Smith J. V., Dytrych W. J., Nature, 1984, 309, 607—608 |
81 | Barrer R. M., Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978 |
82 | Marler B., Gies H., Eur. J. Mineral., 2012, 24, 405—428 |
83 | Roth W. J., Nachtigall P., Morris R. E., Cejka J., Chem. Rev., 2014, 114, 4807—4837 |
84 | Verheyen E., Joos L., Van Havenbergh K., Breynaert E., Kasian N., Gobechiya E., Houthoofd K., Martineau C., Hinterstein M., Taulelle F., Van Speybroeck V., Waroquier M., Bals S., Van Tendeloo G., Kirschhock C. E. A., Martens J. A., Nat. Mater., 2012, 11, 1059—1064 |
85 | Roth W. J., Nachtigall P., Morris R. E., Wheatley P. S., Seymour V. R., Ashbrook S. E., Chlubna P., Grajciar L., Polozij M., Zukal A., Shvets O., Cejka J., Nat. Chem.,2013, 5, 628—633 |
86 | Morris S. A., Bignami G. P. M., Tian Y., Navarro M., Firth D. S., Cejka J., Wheatley P. S., Dawson D. M., Slawinski W. A., Wragg D. S., Morris R. E., Ashbrook S. E., Nat. Chem.,2017, 9, 1012—1018 |
87 | Mazur M., Wheatley P. S., Navarro M., Roth W. J., Polozij M., Mayoral A., Eliasova P., Nachtigall P., Cejka J., Morris R. E., Nat. Chem.,2016, 8, 58—62 |
88 | Eliasova P., Opanasenko M., Wheatley P. S., Shamzhy M., Mazur M., Nachtigall P., Roth W. J., Morris R. E., Cejka J., Chem. Soc. Rev., 2015, 44, 7177—7206 |
89 | Liu X., Mao W., Jiang J., Lu X., Peng M., Xu H., Han L., Che S. A., Wu P., Chem. Eur. J., 2019, 25, 4520—4529 |
90 | Liu X., Luo Y., Mao W. T., Jiang J. G., Xu H., Han L., Sun J. L., Wu P., Angew. Chem. Int. Ed., 2020, 59, 1166—1170 |
91 | Kang J. H., Xie D., Zones S. I., Davis M. E., Chem. Mater.,2020, 32, 2014—2024 |
92 | Kang J. H., Xie D., Zones S. I., Davis M. E., Chem. Mater.,2019, 31, 9777—9787 |
93 | Kubu M., Roth W. J., Greer H. F., Zhou W. Z., Morris R. E., Prech J., Cejka J., Chem. Eur. J., 2013, 19, 13937—13945 |
94 | Kasneryk V., Shamzhy M., Opanasenko M., Wheatley P. S., Morris S. A., Russell S. E., Mayoral A., Trachta M., Čejka J., Morris R. E., Angew. Chem. Int. Ed.,2017, 56, 4324—4327 |
95 | Chlubna⁃Eliasova P., Tian Y., Pinar A. B., Kubu M., Cejka J., Morris R. E., Angew. Chem. Int. Ed.,2014, 53, 7048—7052 |
96 | Shamzhy M. V., Eliasova P., Vitvarova D., Opanasenko M. V., Firth D. S., Morris R. E., Chem. Eur. J.,2016, 22, 17377—17386 |
97 | Yang B. T., Jiang J. G., Xu H., Wu H. H., Wu P., Chin. J. Chem., 2018, 36, 227—232 |
98 | Chen C. Y., Zones S. I., Burton A. W., Elomari S. A., Svelle S., Stud. Surf. Sci. Catal., 2007, 172, 329—334 |
99 | Rodriguez-Fernandez A., Llopis F. J., Martinez C., Moliner M., Corma A., Micropor. Mesopor. Mater., 2018, 267, 35—42 |
100 | Shamzhy M. V., Shvets O. V., Opanasenko M. V., Kurfirtova L., Kubicka D., Cejka J., Chemcatchem,2013, 5, 1891—1898 |
101 | Shi D., Xu L., Chen P., Ma T., Lin C., Wang X., Xu D., Sun J., Chem. Commun.,2019, 55, 1390—1393 |
102 | Sugi Y., Vinu A., J. Nanosci. Nanotech., 2015, 15, 9369—9381 |
103 | Sugi Y., Vinu A., Catalysis Surveys from Asia, 2015, 19, 188—200 |
104 | Prech J., Kubu M., Cejka J., Catalysis Today, 2014, 227, 80—86 |
105 | Wang Y., Wang H., Shao Y., Li T., Tatsumi T., Wang J. G., Catalysts,2019, 9, 257—266 |
106 | Prech J., Vitvarova D., Lupinkova L., Kubu M., Cejka J., Micropor. Mesopor. Mater., 2015, 212, 28—34 |
107 | Liu M., Yokoi T., Kondo J. N., Tatsumi T., Micropor. Mesopor. Mater., 2014, 193, 166—172. |
108 | Fu K., Wang H., Li T., Wang J. G., Mater. Lett.,2019, 244, 10—12 |
1 | Dusselier M., Davis M. E., Chem. Rev., 2018, 118, 5265—5329 |
2 | Yang M., Fan D., Wei Y. X., Tian P., Liu Z. M., Adv. Mater.,2019, 31, 1902181—1902195 |
3 | Zhang L., Duan H., Tan Z., Wu Q., Meng X., Xiao F., Chem. Res. Chinese Universities, 2020, 41(1), 19—27 |
4 | Moliner M., Martinez C., Corma A., Angew. Chem. Int. Ed., 2015, 54, 3560—3579 |
5 | Davis M. E., Saldarriaga C., Montes C., Garces J., Crowdert C., Nature, 1988, 331, 698—699 |
6 | Jiang J., Yu J., Corma A., Angew. Chem. Int. Ed.,2010, 49, 3120—3145 |
7 | Jiang J., Xu Y., Cheng P., Sun Q., Yu J., Corma A., Xu R., Chem. Mater., 2011, 23, 4709—4715 |
8 | Brunner G. O., Meier W. M., Nature, 1989, 337, 146—147 |
9 | Dessau R. M., Schlenker J. L., Higgins J. B., Zeolites, 1990, 10, 522—524 |
10 | Estermann M., McCusker L. B., Baerlocher C., Merrouche A., Kessler H., Nature, 1991, 352, 320—323 |
11 | Lobo R. F., Tsapatsis M., Freyhardt C. C., Khodabandeh S., Wagner P., Chen C. Y., Balkus K. J., Zones S. I., Davis M. E., J. Am. Chem. Soc., 1997, 119, 8474—8484 |
12 | Yoshikawa M., Wagner P., Lovallo M., Tsuji K., Takewaki T., Chen C. Y., Beck L. W., Jones C., Tsapatsis M., Zones S. I., Davis M. E., J. Phys. Chem. B, 1998, 102, 7139—7147 |
13 | Burton A., Elomari S., Chen C. Y., Medrud R., Chan I., Bull L., Kibby C., Harris T., Zones S., Vittoratos E., Chem. Eur. J., 2003, 9, 5737—5748 |
14 | Cheetham A. K., Fjellvg H., Gier T. E., Kongshaug K. O., P. Lillerud K., Stucky G. D., Stud. Surf. Sci. Catal., 2001, 135, 158 |
15 | Strohmaier K. G., Vaughan D. E. W., J. Am. Chem. Soc., 2003, 125, 16035—16039 |
16 | Paillaud J. L., Harbuzaru B., Patarin J., Bats N., Science, 2004, 304, 990—992 |
17 | Corma A., Díaz⁃Cabañas M. J., Rey F., Nicolopoulus S., Boulahya K., Chem. Commun., 2004, 1356—1357 |
18 | Corma A., Díaz⁃Cabañas M. J., Jordá J. L., Martínez C., Moliner M., Nature, 2006, 443, 842—845 |
19 | Sun J., Bonneau C., Cantín Á., Corma A., Díaz⁃Cabañas M. J., Moliner M., Zhang D., Li M., Zou X., Nature, 2009, 458, 1154—1157 |
20 | Corma A., Diaz⁃Cabanas M. J., Jiang J., Afeworki M., Dorset D. L., Soled S. L., Strohmaier K. G., Proc. Natl. Acad. Sci., 2010, 107, 13997—14002 |
21 | Jiang J., Jorda J. L., Diaz⁃Cabanas M. J., Yu J., Corma A., Angew. Chem. Int. Ed., 2010, 49, 4986—4988 |
22 | Jiang J., Jorda J. L., Yu J., Baumes L. A., Mugnaioli E., Diaz⁃Cabanas M. J., Kolb U., Corma A., Science, 2011, 333, 1131—1134 |
23 | Martinez⁃Franco R., Moliner M., Yun Y., Sun J., Wan W., Zou X., Corma A., Proc. Natl. Acad. Sci., 2013, 110, 3749—3754 |
24 | Chen F. J., Xu Y., Du H. B., Angew. Chem. Int. Ed., 2014, 53, 9592—9596 |
25 | Wheatley P. S., Chlubna-Eliasova P., Greer H., Zhou W., Seymour V. R., Dawson D. M., Ashbrook S. E., Pinar A. B., McCusker L. B., Opanasenko M., Cejka J., Morris R. E., Angew. Chem. Int. Ed., 2014, 53, 13210—13214 |
26 | Smeets S., Xie D., Baerlocher C., McCusker L. B., Wan W., Zou X., Zones S. I., Angew. Chem. Int. Ed., 2014, 53, 10398—10402 |
27 | Willhammar T., Burton A. W., Yun Y., Sun J., Afeworki M., Strohmaier K. G., Vroman H., Zou X., J. Am. Chem. Soc., 2014, 136, 13570—13573 |
28 | Yun Y., Hernández M., Wan W., Zou X., Jordá J. L., Cantín A., Rey F., Corma A., Chem. Commun., 2015, 51, 7602—7605 |
29 | Jiang J., Yun Y., Zou X., Jorda J. L., Corma A., Chem. Sci., 2015, 6, 480—485 |
30 | Jo C., Lee S., Cho S. J., Ryoo R., Angew. Chem. Int. Ed., 2015, 54, 12805—12808 |
31 | Smeets S., Berkson Z. J., Xie D., Zones S. I., Wan W., Zou X., Hsieh M. F., Chmelka B. F., McCusker L. B., Baerlocher C., J. Am. Chem. Soc., 2017, 139, 16803—16812 |
32 | Zhang C., Kapaca E., Li J., Liu Y., Yi X., Zheng A., Zou X., Jiang J., Yu J., Angew. Chem. Int. Ed., 2018, 57, 6486—6490 |
33 | Yang B., Jiang J.-G., Xu H., Wu H., He M., Wu P., Angew. Chem. Int. Ed., 2018, 57, 9515—9519 |
34 | Zi W. W., Gao Z., Zhang J., Zhao B. X., Cai X. S., Du H. B., Chen F. J., Angew. Chem. Int. Ed., 2020, 59, 3948—3951 |
35 | Villaescusa L. A., Li J., Gao Z., Sun J., Camblor M. A., Angew. Chem. Int. Ed., 2020, 59, 11283—11286 |
36 | Li J., Zhang C., Jiang J., Yu J., Terasaki O., Mayoral A., J. Phys. Chem. L, 2020, 11, 3350—3356 |
37 | Shvets O. V., Zukal A., Kasian N., Žilková N., Čejka J., Chem. Eur. J., 2008, 14, 10134—10140 |
38 | Qian K., Wang Y., Liang Z., Li J., RSC Adv., 2015, 5, 63209—63214 |
39 | Bai R., Sun Q., Wang N., Zou Y., Guo G., Iborra S., Corma A., Yu J., Chem. Mater., 2016, 28, 6455—6458 |
40 | Wang M., Zhang L., Guo K., Lin Y., Meng X., Huang P., Wei Y., Zhang R., Chem. Eur. J., 2019, 14, 621—626 |
41 | Su J., Wang Y., Lin J., Liang J., Sun J., Zou X., Dalton Trans., 2013, 42, 1360—1363 |
42 | Yoshino M., Matsuda M., Miyake M., Solid State Ionics, 2002, 151, 269—274 |
43 | Wei Y., Tian Z., Gies H., Xu R., Ma H., Pei R., Zhang W., Xu Y., Wang L., Li K., Wang B., Wen G., Lin L., Angew. Chem. Int. Ed., 2010, 49, 5367—5370 |
44 | Tao S., Xu R., Li X., Li D., Ma H., Wang D., Xu Y., Tian Z., J. Colloid Interface Sci., 2015, 451, 117—124 |
45 | Lin Y., Zhang L., Guo K., Wang M., Wei Y., Chem. Eur. J., 2018, 24, 2410—2417 |
[1] | 李健, 于明明, 孙源, 冯文华, 冯兆池, 吴剑峰. 水溶液pH对甲烷低温氧化制备甲醇的影响[J]. 高等学校化学学报, 2021, 42(3): 776. |
[2] | 王健羽, 张强, 闫文付, 于吉红. 羟基自由基在沸石分子筛合成中的作用[J]. 高等学校化学学报, 2021, 42(1): 11. |
[3] | 刘珊珊, 柴玉超, 关乃佳, 李兰冬. 分子筛材料在小分子吸附分离中的应用[J]. 高等学校化学学报, 2021, 42(1): 268. |
[4] | 王博伦, 宗思宇, 李激扬. 光致发光沸石分子筛复合材料的研究进展[J]. 高等学校化学学报, 2021, 42(1): 299. |
[5] | 章凌,段宏昌,谭争国,吴勤明,孟祥举,肖丰收. 用于柴油车尾气消除反应(NH3-SCR)的八元环沸石分子筛研究进展[J]. 高等学校化学学报, 2020, 41(1): 19. |
[6] | 虞天, 许成楠, 于嫄, 赵飞飞, 潘一廷, 刘才, 黄永东, 张荣月. 原子转移自由基聚合法制备超大孔聚合物微球[J]. 高等学校化学学报, 2016, 37(9): 1740. |
[7] | 李莉, 颜岩, 王大明, 郑大方, 李激扬. 具有16元环超大孔道磷酸钒化合物的水热合成及表征[J]. 高等学校化学学报, 2014, 35(11): 2285. |
[8] | 钱昆, 宋晓伟, 徐达, 李激扬. 以季磷化合物为模板剂合成超大孔分子筛ITQ-33[J]. 高等学校化学学报, 2012, 33(10): 2141. |
[9] | 林森, 殷成阳, 王利丰, 蒋大振, 肖丰收. MFI分子筛前驱体对Y型沸石分子筛表面的修饰及其催化性质[J]. 高等学校化学学报, 2005, 26(1): 152. |
[10] | 何红运, 庞文琴, 刘午阳, 邓凤. 合成条件对无铝Fe-β沸石分子筛晶化的影响[J]. 高等学校化学学报, 2002, 23(3): 353. |
[11] | 许宁, 吴通好, 王东阳, 吴鹏, 阚秋斌, 孙家锺. 层状分子筛MCM-56的合成及表征[J]. 高等学校化学学报, 2001, 22(11): 1898. |
[12] | 徐柏庆, Sachtler W. M. H. . Rh/NaY催化剂上合成气选择一步生成乙酸[J]. 高等学校化学学报, 1999, 20(5): 794. |
[13] | 李宝宗, 徐文国, 裘式纶, 庞文琴, 徐如人. F-对沸石分子筛双四元环影响的量子化学计算[J]. 高等学校化学学报, 1998, 19(6): 930. |
[14] | 徐翊华, 张丽萍, 徐如人. 一种新颖的十八元环超大孔分子筛骨架拓扑结构CJU-18的设计[J]. 高等学校化学学报, 1992, 13(5): 561. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||