高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (12): 2717-2724.doi: 10.7503/cjcu20200384
陈秋宏, 叶艳春, 任孟然, 王凯民(), 唐怀军(
), 汪正良, 周强
收稿日期:
2020-06-23
出版日期:
2020-12-10
发布日期:
2020-12-09
通讯作者:
唐怀军
E-mail:wkmchemistry@qq.com;tanghuaijun@sohu.com
作者简介:
王凯民, 男, 博士, 讲师, 主要从事金属-有机框架发光材料的合成和应用研究. E-mail: 基金资助:
CHEN Qiuhong, YE Yanchun, REN Mengran, WANG Kaimin(), TANG Huaijun(
), WANG Zhengliang, ZHOU Qiang
Received:
2020-06-23
Online:
2020-12-10
Published:
2020-12-09
Contact:
TANG Huaijun
E-mail:wkmchemistry@qq.com;tanghuaijun@sohu.com
Supported by:
摘要:
以2-萘基吡啶(npy)为主配体, N,N-二苯基-4-[4-苯基-5-(吡啶-2-基)-4H-1,2,4-三唑-3-基]苯胺(DPPTA)为辅助配体, 合成了含有三苯胺-三唑双极性结构单元的橙红光阳离子型有机铱(Ⅲ)配合物[(npy)2Ir(DPPTA)]PF6. 该配合物的热分解温度高达345 ℃, 从20 ℃升温到100 ℃时, 相对发光强度衰减28.0%, 发光颜色稳定. 其所含的双极性结构单元使其能有效地吸收GaN芯片的蓝光(λem,max=455 nm), 进而可被蓝光高效激发. 以GaN蓝光芯片作为激发光源, [(npy)2Ir(DPPTA)]PF6为下转换发光材料, 可以制得橙红光LEDs; 进一步与黄光材料Y3Al5O12∶Ce3+(YAG:Ce3+)联用, 可以制得高效的中性白光和暖白光LEDs.
中图分类号:
陈秋宏, 叶艳春, 任孟然, 王凯民, 唐怀军, 汪正良, 周强. 含有三苯胺-三唑双极性单元的橙红光阳离子型铱(Ⅲ)配合物的合成及在LEDs中的应用[J]. 高等学校化学学报, 2020, 41(12): 2717-2724.
CHEN Qiuhong, YE Yanchun, REN Mengran, WANG Kaimin, TANG Huaijun, WANG Zhengliang, ZHOU Qiang. Synthesis of an Orange-red-emitting Cationic Iridium(III) Complex Containing a Triphenylamine-triazole Bipolar Unit and Its Application in LEDs[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2717-2724.
Fig.1 UV?Vis absorption spectrum of [(npy)2Ir(DPPTA)]PF6 in CH2Cl2(1×10-5 mol/L)(a), electroluminescence spectrum of GaN chip(b) and photoluminescence(PL) spectrum of YAG∶Ce3+ (λex=455 nm)(c)
Fig.2 Normalized excitation and emission spectra of [(npy)2Ir(DPPTA)]PF6 in three statesa. In CH2Cl2 at 1.0×10-5 mol/L; b. blended in silicone at 3.0% mass fraction; c. in powders. Inset: photograph of the complex in powders under blue light(455 nm) irradiation.
Fig.5 Normalized emission spectra of GaN?based LEDs using [(npy)2Ir(DPPTA)]PF6 blended in silicone as down?conversion luminescent materials at different mass fraction(x=0.5%, 1.0%, 2.0%, 3.0%)
Fig.6 Normalized emission spectra of GaN?based LEDs using [(npy)2Ir(DPPTA)]PF6(mass fraction, y=0, 0.5%, 1.0%, 2.0%) and YAG∶Ce3+(mass fraction 7.0%) blended in silicone as down?conversion luminescent materials
No. | Blending concentrations of complex(%) | Luminous efficiency/(lm·W-1) | CRI | CCT/K | λem,max/nm | CIE(x, y) |
---|---|---|---|---|---|---|
a | 0.5 | 1.5 | 15.4 | 100000 | 458, 609 | (0.24, 0.15) |
b | 1.0 | 1.3 | 24.5 | 3997 | 457, 609 | (0.30, 0.19) |
c | 2.0 | 0.7 | 52.4 | 2133 | 458, 615 | (0.39, 0.25) |
d | 3.0 | 0.4 | 73.1 | 1358 | 617 | (0.59, 0.34) |
Table 1 Performance of GaN-based LEDs only using [(npy)2Ir(DPPTA)]PF6 blended in silicone as down-conversion luminescent materials
No. | Blending concentrations of complex(%) | Luminous efficiency/(lm·W-1) | CRI | CCT/K | λem,max/nm | CIE(x, y) |
---|---|---|---|---|---|---|
a | 0.5 | 1.5 | 15.4 | 100000 | 458, 609 | (0.24, 0.15) |
b | 1.0 | 1.3 | 24.5 | 3997 | 457, 609 | (0.30, 0.19) |
c | 2.0 | 0.7 | 52.4 | 2133 | 458, 615 | (0.39, 0.25) |
d | 3.0 | 0.4 | 73.1 | 1358 | 617 | (0.59, 0.34) |
No. | Blending concentrations(%) | Luminous efficiency/(lm·W-1) | CRI | CCT/K | λem,max/nm | CIE(x, y) | |
---|---|---|---|---|---|---|---|
YAG∶Ce3+ | Complex | ||||||
e | 7.0 | 0 | 139.9 | 72.7 | 6228 | 456, 560 | (0.32, 0.33) |
f | 7.0 | 0.5 | 122.1 | 79.6 | 4716 | 455, 583 | (0.35, 0.34) |
g | 7.0 | 1.0 | 88.5 | 80.3 | 4191 | 455, 588 | (0.38, 0.36) |
h | 7.0 | 2.0 | 72.4 | 78.7 | 3390 | 455, 594 | (0.41, 0.40) |
Table 2 Performance of GaN-based LEDs using [(npy)2Ir(DPPTA)]PF6 and YAG∶Ce3+ blended in silicone as down-conversion luminescent materials
No. | Blending concentrations(%) | Luminous efficiency/(lm·W-1) | CRI | CCT/K | λem,max/nm | CIE(x, y) | |
---|---|---|---|---|---|---|---|
YAG∶Ce3+ | Complex | ||||||
e | 7.0 | 0 | 139.9 | 72.7 | 6228 | 456, 560 | (0.32, 0.33) |
f | 7.0 | 0.5 | 122.1 | 79.6 | 4716 | 455, 583 | (0.35, 0.34) |
g | 7.0 | 1.0 | 88.5 | 80.3 | 4191 | 455, 588 | (0.38, 0.36) |
h | 7.0 | 2.0 | 72.4 | 78.7 | 3390 | 455, 594 | (0.41, 0.40) |
Fig.7 CIE chromaticity coordinates of GaN?based LEDs(No. d—h in Table 1 and Table 2)(left) and photographs of the LEDs in working state(right)No. d: only [(npy)2Ir(DPPTA)]PF6(3.0%) being used.No. e—h: YAG∶Ce3+(7.0%) and [(npy)2Ir(DPPTA)]PF6(0%, 0.5%, 1.0%, 2.0%) being used.
1 | Tsao J. Y., Crawford M. H., Coltrin M. E., Fischer A. J., Koleske D. D., Subramania G. S., Wang G. T., Wierer J. J., Karlicek Jr R. F., Adv. Opt. Mater.,2014, 2(9), 809—836 |
2 | Cho J., Park J. H., Kim J. K., Schubert E. F., Laser Photonics Rev.,2017, 11(2), 1600147 |
3 | Alexeev A., Linnartz J. P., Onushkin G., Arulandu K., Martin G., Measurement, 2020, 156, 107599 |
4 | Dahri F. A., Umrani F. A., Baqai A., Mangrio H. B., Phys. Commun.,2020, 38, 100981 |
5 | Yeh P., Yeh N., Lee C. H., Ding T. J., Renew. Sust. Energ. Rev.,2017, 75, 461—468 |
6 | Ye S., Xiao F., Pan Y. X., Ma Y. Y., Zhang Q. Y., Mater. Sci. Eng. R,2010, 71(1), 1—34 |
7 | Setlur A. A., Lyons R. J., Murphy J. E., Prasanth Kumar N., Satya Kishore M., ECS J. Solid State Sci. Technol., 2012, 2(2), R3059—R3070 |
8 | Jin J. Y., Kim Y. M., Lee S. H., Lee Y. S., Synth. Met.,2009, 159(17), 1804—1808 |
9 | Findlay N. J., Bruckbauer J., Inigo A. R., Breig B., Arumugam S., Wallis D. J., Martin R. W., Skabara P. J., Adv. Mater., 2014, 26(43), 7290—7294 |
10 | Boddula R., Vaidyanathan S., J. Photochem. Photobiol. A,2017, 347, 26—40 |
11 | Niklaus L., Dakhil H., Kostrzewa M., Coto P. B., Sonnewald U., Wierschem A., Costa R. D., Mater. Horiz.,2016, 3(4), 340—347 |
12 | Sun C. Y., Wang X. L., Zhang X., Qin C., Li P., Su Z. M., Zhu D. X., Shan G. G., Shao K. Z., Wu H., Li J., Nat. Commun., 2013, 4(1), 2717 |
13 | Meng G. Y., Chen Z. Y., Tang H. J., Liu, Y., Wei L. Y., Wang Z. L., New J. Chem.,2015, 39(12), 9535—9542 |
14 | Ye Y. C., Sun R. Y., Chen M. X., Tang H. J., Dong X. Y., Wang K. M., Wang Z. L., J. Mater. Sci. Mater. Electron., 2018, 29(2), 1554—1561 |
15 | Sun R. Y., Chen Z. Y., Ye Y. C., Chen M. X., Tang H. J., Wang K. M., Wang Z. L., Chem. J. Chinese Universities, 2018, 39(5), 869—875(孙日勇, 陈泽宇, 叶艳春, 陈明先, 唐怀军, 王凯民, 汪正良. 高等学校化学学报, 2018, 39(5), 869—875) |
16 | Ezquerro C., Fresta E., Serrano E., Lalinde E., García-Martínez J., Berenguer J. R., Costa R. D., Mater. Horizons.,2019, 6(1), 130—136 |
17 | Chen H., Zhao X., Gao H., Zhu H. D., Jiang L. H., Ling Q. D., Chem. J. Chinese Universities, 2015, 36(1), 41—47(陈鸿, 赵旋, 高慧, 朱海娣, 姜丽红, 凌启淡. 高等学校化学学报,2015, 36(1), 41—47) |
18 | Boonsin R., Chadeyron G., Roblin J. P., Boyer D., Mahiou R., J. Mater. Chem. C,2016, 4, 6562—6569 |
19 | Costa D. R., Ort E., Bolink H. J., Monti F., Accorsi G., Armaroli N., Angew. Chem. Int. Ed., 2012, 51(33), 8178—8211 |
20 | Ma D. X., Tsuboi T. J., Qiu Y., Duan L., Adv. Mater.,2017, 29(3), 1603253 |
21 | Lo K. K. W., Li S. P. Y., Zhang K. Y., New J. Chem.,2011, 35(2), 265—287 |
22 | Li Z. F., Peng Q., He P., Wang Y. L., Hou Q. F., Li B. L., Tian W. J., Chinese J. Org. Chem., 2012, 32(5), 834—851(李在房, 彭强, 和平, 王艳玲, 侯秋飞, 李本林, 田文晶. 有机化学, 2012, 32(5), 834—851) |
23 | Li W. N., Ye L., Li S. S., Yao H. F., Ade H., Hou J. H., Adv. Mater.,2018, 30(16), 1707170 |
24 | Wong W. Y., Ho C. L., Coord. Chem. Rev.,2009, 253(13), 1709—1758 |
25 | Chen H. J., Chinese J. Org. Chem., 2016, 36(3), 460—479(陈华杰. 有机化学, 2016, 36(3), 460—479) |
26 | Jin H. D., Xu W. G., Li H., Wei B. S., Zhejiang Chem. Ind., 2014, 12(9), 1—4(金杭丹, 徐卫国, 李华, 魏柏松. 浙江化工, 2014, 12(9), 1—4) |
27 | Lowry M. S., Hudson W. R., Pascal R. A., Bernhard S., J. Am. Chem. Soc.,2004, 126(43), 14129—14135 |
28 | Sahoo H., J. Photoch. Photobio. C, 2011, 12(1), 20—30 |
29 | Chen L., Lin C. C., Yeh C. W., Liu R. S., Materials,2010, 3, 2172—2195 |
30 | Zhong J. S., Chen D. Q., Yuan, Y. J., Chen L. F., Yu H., Ji Z. G., Chem. Eng. J.,2017, 309, 795—801 |
[1] | 闻嘉丽, 张钧豪, 姜久兴. 超大孔分子筛, 十年再回顾[J]. 高等学校化学学报, 2021, 42(1): 101-116. |
[2] | 焦美晨, 蒋金刚, 徐浩, 吴鹏. 硅锗分子筛的结构稳固、 结构可控调变及催化应用[J]. 高等学校化学学报, 2021, 42(1): 29-39. |
[3] | 刘启予, 范炜. 介孔分子筛制备技术新进展—二次合成、超分子自组装和介孔生成剂法[J]. 高等学校化学学报, 2021, 42(1): 60-73. |
[4] | 余丽莎, 李丹, 肖丽萍, 范杰. 沸石与蛋白质的相互作用及生物医用功能[J]. 高等学校化学学报, 2021, 42(1): 311-320. |
[5] | 袁中文, 贺利贞, 陈填烽. 单原子催化剂的生物医学应用[J]. 高等学校化学学报, 2020, 41(12): 2690-2709. |
[6] | 李观俊, 龙腊生, 孔祥建, 郑兰荪. 稀土-钛氧簇合物的研究进展[J]. 高等学校化学学报, 2020, 41(12): 2577-2586. |
[7] | 咸国轩, 于玉娥, 陈玉倩, 万小雨, 王素娜, 卢静. 辅助配体调控的荧光Cd-MOFs: 乙酰丙酮的荧光增强和Cr(Ⅵ)的荧光猝灭[J]. 高等学校化学学报, 2020, 41(12): 2725-2735. |
[8] | 巴智晨 梁大鑫 谢延军. MXene复合材料的发展:界面调控及结构设计[J]. 高等学校化学学报, 0, (): 0-0. |
[9] | 夏雨沛, 王晨雪, 郑金玉, 李娜, 常泽, 卜显和. 基于咔唑羧酸配体构筑铁基金属有机框架及其对CO2/CH4混合气体的分离性质[J]. 高等学校化学学报, 2020, 41(11): 2415-2420. |
[10] | 王雅雯 李东 梁文凯 孙迎辉 江林. 表面等离激元金属纳米粒子的多元化结构及其应用[J]. 高等学校化学学报, 0, (): 0-0. |
[11] | 蔡瑞, 刘建波, 吴晓春. 贵金属基纳米酶的研究进展[J]. 高等学校化学学报, 2021, 42(Album-4): 1-14. |
[12] | 王隆杰, 范鸿川, 秦渝, 曹秋娥, 郑立炎. 金属有机框架材料在分离分析领域的研究进展[J]. 高等学校化学学报, 2021, 42(Album-4): 1-10. |
[13] | 王瑞, 黄新松, 刘天赋, 曹荣. 金属有机框架用于一氧化碳氧化[J]. 高等学校化学学报, 2020, 41(10): 2174-2184. |
[14] | 杨鹏飞, 石雨萍, 张艳锋. 二维过渡金属硫属化合物的大面积制备与应用研究进展[J]. 高等学校化学学报, 2021, 42(Album-3): 1-19. |
[15] | 万月, 宋美娜, 赵美廷. 二维金属有机框架纳米片的合成及在超电容和电催化领域的应用[J]. 高等学校化学学报, 2021, 42(Album-3): 1-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||