高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (10): 20230116.doi: 10.7503/cjcu20230116

• 物理化学 • 上一篇    下一篇

蛇皮非对称结构启发增阻/减阻表面的设计与构筑

闻治瑄, 辛伟闻2, 徐倩, 陈伟鹏2, 周腾3, 房若辰1(), 孔祥玉2(), 江雷2   

  1. 1.北京航天航空大学化学学院, 北京100191
    2.中国科学院理化技术研究所, 中国科学院仿生材料与界面科学重点实验室, 北京100190
    3.海南大学机电工程学院, 海口570228
  • 收稿日期:2023-03-20 出版日期:2023-10-10 发布日期:2023-05-23
  • 通讯作者: 房若辰,孔祥玉 E-mail:fangrc@buaa.edu.cn;kongxiangyu@mail.ipc.ac.cn
  • 作者简介:清华大学附属中学将台路校区.
    清华大学附属中学将台路校区.
  • 基金资助:
    国家自然科学基金(21905287)

Design and Construction of Increasing- and Reducing-drag Surfaces Inspired by Asymmetrical Structure of Snakeskin

WEN Zhixuan, XIN Weiwen2, XU Qian, CHEN Weipeng2, ZHOU Teng3, FANG Ruochen1(), KONG Xiangyu2(), JIANG Lei2   

  1. 1.School of Chemistry,Beihang University,Beijing 100191,China
    2.CAS Key Laboratory of Bio?inspired Materials and Interfacial Science,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China
    3.College of Mechanical and Electrical Engineering,Hainan University,Haikou 570228,China
  • Received:2023-03-20 Online:2023-10-10 Published:2023-05-23
  • Contact: FANG Ruochen, KONG Xiangyu E-mail:fangrc@buaa.edu.cn;kongxiangyu@mail.ipc.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(21905287)

摘要:

锦蛇是一种分布广泛的蛇类, 主要栖息在沿海低地及内陆平原、 丘陵和山区等地区, 其反应迅速, 能在多种环境中快速移动. 为了探究锦蛇能够快速移动的奥秘, 对锦蛇腹部与背部进行观察, 发现这两部分具有截然不同的结构. 其中, 锦蛇背部鳞片呈现横向有序凸起结构, 这种结构有利于运动减阻; 锦蛇腹部鳞片呈现纵向有序凸起结构, 这种结构有利于增加锦蛇与接触表面摩擦力, 从而利于其快速向前运动. 受此启发, 以蛇皮腹部、 背部不同的表面结构为模型, 从结构差异及蛇皮腹背功能差异两个方面入手, 通过复形分别制备出具有增阻和减阻功能的仿生材料. 根据锦蛇腹背微结构构建了仿真模型, 通过有限元模拟仿真分析, 揭示了锦蛇特殊的表面微结构能够有效实现材料表面的增阻或减阻, 该工作为功能界面材料的应用奠定了基础.

关键词: 蛇皮, 仿生, 复形, 增阻减阻设计, 界面材料

Abstract:

Elaphe snake is a widely distributed snake, mainly living in coastal lowlands, inland plains, hills and mountains and other areas, which is quick to react and can move quickly in a variety of environments. In order to explore the mystery of the fast movement of the brocade snake, we observed the belly and the notum of the snake, and found that the two parts have completely different structures. In this regard, the scales on the notum of the snake show a transverse ordered convex structure, which is conducive to the movement of drag reduction. The scales of the belly of the snake present a longitudinal and orderly convex structure, which is conducive to increase the friction between the snake and the contact surface, so as to facilitate its rapid forward movement. Inspired by this, we take different surface structures of snakeskin belly and notum as models, starting from two aspects of structural differences and functional differences of snakeskin belly and notum, and prepare biomimetic materials with drag-increasing and drag-reducing functions respectively through the method of complex shape. In addition, we built a simulation model based on the microstructure of the belly and notum of the snake. Through finite element simulation analysis, we revealed that the special surface microstructure of the snake can effectively realize the drag-increasing and drag- reducing functions of the material surface. This work lays a foundation for the application of functional interface materials.

Key words: Snakeskin, Biomimetic, Complex form, Drag-increasing and drag-reducing design, Interfacial material

中图分类号: 

TrendMD: