高等学校化学学报 ›› 2018, Vol. 39 ›› Issue (7): 1554-1563.doi: 10.7503/cjcu20170838

• 高分子化学 • 上一篇    下一篇

具有形状记忆效应的仿生复合纳米纤维的制备与性能评价

周颖, 王先流, 易兵成, 余哲泡, 杨上莹, 沈炎冰, 张彦中()   

  1. 东华大学化学化工与生物工程学院, 上海 201620
  • 收稿日期:2017-12-22 出版日期:2018-07-10 发布日期:2018-06-01
  • 作者简介:联系人简介: 张彦中, 男, 博士, 教授, 博士生导师, 主要从事生物材料研究. E-mail: yzzhang@dhu.edu.cn
  • 基金资助:
    国家自然科学基金(批准号: 31771050, 31570969)、 国家重点研发计划项目(批准号: 2016YFC1100203)和上海市科委基础研究重点项目(批准号: 14JC1490100)资助.

Engineering Shape Memory Enabled Composite Nanofibers for Bone Tissue Engineering

ZHOU Ying, WANG Xianliu, YI Bingcheng, YU Zhepao, YANG Shangying, SHEN Yanbing, ZHANG Yanzhong*()   

  1. College of Chemistry, Chemical Engineering & Biotechnology,Donghua University, Shanghai 201620, China
  • Received:2017-12-22 Online:2018-07-10 Published:2018-06-01
  • Contact: ZHANG Yanzhong E-mail:yzzhang@dhu.edu.cn
  • Supported by:
    † Supported by the National Natural Science Foundation of China(Nos.31771050, 31570969), the National Key Research and Development Program of China(No.2016YFC1100203) and the Key Project of Science and Technology of Shanghai Municipality, China(No.14JC1490100)

摘要:

将乳酸-己内酯共聚物(PLCL)、 羟基磷灰石(HAp)和胶原(Col)(质量比92.5∶5∶2.5)通过静电纺丝法制备出PLCL/HAp/Col三元复合纳米纤维, 表征了其形貌结构、 热稳定性、 力学性能、 形状记忆和生物学性能, 探讨了其作为一种新型仿生支架用于骨组织再生的可能性. 结果表明, 所制备的复合纳米纤维形貌均一、 直径约为500 nm, HAp和Col被嵌入PLCL纤维基体中. 生物活性成分HAp及Col的引入可使PLCL纤维的玻璃化转变温度(Tg, 即形状记忆转变温度Ttran)维持在~38 ℃, 而力学性能则获得显著提高[杨氏模量从(95.77±1.24) MPa增加到(111.97±4.45) MPa]. PLCL/HAp/Col复合纳米纤维具有较好的形状固定率(>99%)和形状回复率(>96%). 生物学评价表明, HAp及Col的加入有利于大鼠源骨髓间充质干细胞(rBMSCs)的黏附与增殖, 也能增强碱性磷酸酶(ALP)、 Col的表达和矿物沉积. 本文为进一步研究PLCL/HAp/Col的生物力学效应奠定了基础.

关键词: 形状记忆聚合物, 仿生复合纳米纤维, 静电纺丝, 骨组织工程, 骨髓间充质干细胞, 生物矿化

Abstract:

Engineering biomaterial scaffolds with shape memory effect(SME) could offer a new modality to regulate cell behavior for achieving enhanced efficacy in tissue regeneration. In this study, hydroxyapatite(HAp), collagen(Col) and poly(L-lactide-co-caprolactone)(PLCL) were hybridized at the mass ratio of 92.5∶5∶2.5 for preparing composite nanofibers of PLCL/HAp/Col via electrospinning. Morphological, structural, thermal-mechanical, shape memory properties and biological properties of the composite nanofibers were systematically investigated for potential use in bone regeneration. The results showed that HAp and Col could be incorporated within the fiber matrix of PLCL with a diameter of ca. 500 nm. The glass transition temperature(Tg) of the composite nanofibers, i.e., the transition temperature(Ttran) for actuating shape recovery of the PLCL fibers, was maintained at 38 ℃. Introduction of the HAp and Col components into PLCL fibers led to improved mechanical properties with a noted Young’s modulus of (111.97±4.45) MPa. Shape memory test results showed that PLCL/HAp/Col composite nanofibers possessed impressive shape fixation rate(>99%) and shape recovery rate(>96%). Moreover, compared to controls, the nanofibrous PLCL/HAp/Col scaffolds significantly promoted the rat bone marrow-derived mesenchymal stem cells(rBMSCs) to proliferate favorably and also enhanced the expression of ALP, Col and mineral deposition. These results laid a foundation for further exploration of the biomechanical effects of the shape memory capable nanofibrous PLCL/HAp/Col in the future.

Key words: Shape memory polymer, Biomimetic composite nanofiber, Electrospinning, Bone tissue engineering, Bone marrow mesenchymal stem cell, Biomineralization

中图分类号: