高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (5): 855.doi: 10.7503/cjcu20190688
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2019-12-18
出版日期:
2020-05-10
发布日期:
2020-02-17
通讯作者:
赖小勇
E-mail:xylai@nxu.edu.cn
基金资助:
Received:
2019-12-18
Online:
2020-05-10
Published:
2020-02-17
Contact:
Xiaoyong LAI
E-mail:xylai@nxu.edu.cn
Supported by:
摘要:
先进气体传感器技术在现代社会安全生产生活中扮演着极为重要的角色, 而高效敏感材料的设计与开发是其中的关键. 中空多壳层结构材料因其独特的层层嵌套的多壳层与多腔体结构而表现出特别的物理化学性质, 在气体传感领域显现出巨大的应用潜力. 传统的硬模板法、 软模板法以及基于奥斯特瓦尔德熟化和柯肯德尔效应的无模板法在中空多壳层纳米结构材料的普适制备及壳层结构的精确调控等方面存在诸多限制. 次序模板法的出现突破了上述限制, 促进了该领域的迅速发展. 本文简要回顾了中空多壳层结构材料制备方法的发展历程, 介绍了其在甲醛、 乙醇、 丙酮、 甲苯及二氧化氮等有害气体检测中的具体应用, 分析了其在气体传感领域的独特优势, 最后对该领域面临的挑战和发展前景进行了总结与展望.
中图分类号:
TrendMD:
孙辉, 赖小勇. 中空多壳层结构材料的制备及气体传感应用研究进展. 高等学校化学学报, 2020, 41(5): 855.
SUN Hui, LAI Xiaoyong. Progress in Preparation and Gas-sensing Application of Hollow Multi-shell Structured Materials . Chem. J. Chinese Universities, 2020, 41(5): 855.
Fig.1 Band bending in a wide bandgap semiconductor after chemisorption of charged species on surface sites[18] EC, EV and EF: conduction band, valence band, and the Fermi level; Λair: thickness of the space-charge layer; eVsurface: potential barrier. Copyright 2006, Wiley VCH.
Year | Composition | Morphology | Shell number | Size/nm | Specific area/ (m2·g-1) | Preparation characteristics | Ref. | |
---|---|---|---|---|---|---|---|---|
2007 | Cu2O | Sphere | 1—4 | 150—180 | — | Vesicle templating | [ | |
2007 | SnO2 | Sphere | 3 | 1000—2000 | 36.17 | Chemical self-assembly | [ | |
2009 | MFe2O4 | Sphere | 1—3 | 1200 | 109.8 | Sequential templating | [ | |
(M=Zn, Co, Ni, Cd) | ||||||||
2010 | TiO2 | Sphere | 1—4 | 1300 | — | Sequential templating | [ | |
2011 | ZnO | Sphere | 1—4 | 3500 | 85 | Sequential templating | [ | |
2012 | WO3 | Sphere | 1—3 | ca.250 | 62 | Sequential templating | [ | |
2013 | α-Fe2O3 | Sphere | 1—3 | 300—3000 | 17.3 | Sequential templating | [ | |
2014 | Au/CeO2 | Sphere | 1—4 | 300 | 90 | Sequential templating | [ | |
2014 | Mn2O3 | Sphere | 1—4 | 500—800 | 36.55 | pH value tuning and | [ | |
sequential templating | ||||||||
2014 | Co3O4 | Sphere | 4—6 | 2600 | 6.4 | Spray drying and | [ | |
sequential templating | ||||||||
2015 | Cr2O3 | Sphere | 1—4 | 1000—3000 | 65.34 | Sequential templating | [ | |
2016 | V2O5 | Sphere | 1—3 | ca. 700 | 28.32 | Sequential templating | [ | |
2016 | MoO2/carbon | Sphere | 1—4 | 580—1100 | 60.9 | Solvothermal and | [ | |
sequential templating | ||||||||
2017 | MOFs(MIL-101) | Truncated octahedral | 1—3 | 350 | 1486 | Layer-by-layer self- | [ | |
assembly and etching | ||||||||
2017 | NiCo2O4 | Sphere | 1—3 | 200—300 | 27.91 | Sequential templating | [ | |
2018 | ZnO | Mesoporous sphere | 1—3 | ca. 1500 | 20 | Hydrothermal and | [ | |
sequential templating | ||||||||
2018 | ZnO/ZnFe2O4 | Sphere | 1—3 | 850—1000 | 62.4 | Sequential templating | [ | |
2018 | ZnS-CdS | Rhombic dodecahedrons | 1—5 | ca. 2200 | — | MOFs as template and | [ | |
sequential templating | ||||||||
2019 | Co3O4 | Dodecahedron | 1—4 | ca.2200 | — | MOFs as template and | [ | |
sequential templating | ||||||||
2019 | CoS | Cube | 2—5 | 800 | — | MOFs as template and | [ | |
sequential templating | ||||||||
2019 | Co/Mn oxide | Dodecahedra | 1—3 | 2300 | 84.60 | MOFs as template and | [ | |
sequential templating |
Table 1 Preparation and property of typical hollow multi-shell structural materials
Year | Composition | Morphology | Shell number | Size/nm | Specific area/ (m2·g-1) | Preparation characteristics | Ref. | |
---|---|---|---|---|---|---|---|---|
2007 | Cu2O | Sphere | 1—4 | 150—180 | — | Vesicle templating | [ | |
2007 | SnO2 | Sphere | 3 | 1000—2000 | 36.17 | Chemical self-assembly | [ | |
2009 | MFe2O4 | Sphere | 1—3 | 1200 | 109.8 | Sequential templating | [ | |
(M=Zn, Co, Ni, Cd) | ||||||||
2010 | TiO2 | Sphere | 1—4 | 1300 | — | Sequential templating | [ | |
2011 | ZnO | Sphere | 1—4 | 3500 | 85 | Sequential templating | [ | |
2012 | WO3 | Sphere | 1—3 | ca.250 | 62 | Sequential templating | [ | |
2013 | α-Fe2O3 | Sphere | 1—3 | 300—3000 | 17.3 | Sequential templating | [ | |
2014 | Au/CeO2 | Sphere | 1—4 | 300 | 90 | Sequential templating | [ | |
2014 | Mn2O3 | Sphere | 1—4 | 500—800 | 36.55 | pH value tuning and | [ | |
sequential templating | ||||||||
2014 | Co3O4 | Sphere | 4—6 | 2600 | 6.4 | Spray drying and | [ | |
sequential templating | ||||||||
2015 | Cr2O3 | Sphere | 1—4 | 1000—3000 | 65.34 | Sequential templating | [ | |
2016 | V2O5 | Sphere | 1—3 | ca. 700 | 28.32 | Sequential templating | [ | |
2016 | MoO2/carbon | Sphere | 1—4 | 580—1100 | 60.9 | Solvothermal and | [ | |
sequential templating | ||||||||
2017 | MOFs(MIL-101) | Truncated octahedral | 1—3 | 350 | 1486 | Layer-by-layer self- | [ | |
assembly and etching | ||||||||
2017 | NiCo2O4 | Sphere | 1—3 | 200—300 | 27.91 | Sequential templating | [ | |
2018 | ZnO | Mesoporous sphere | 1—3 | ca. 1500 | 20 | Hydrothermal and | [ | |
sequential templating | ||||||||
2018 | ZnO/ZnFe2O4 | Sphere | 1—3 | 850—1000 | 62.4 | Sequential templating | [ | |
2018 | ZnS-CdS | Rhombic dodecahedrons | 1—5 | ca. 2200 | — | MOFs as template and | [ | |
sequential templating | ||||||||
2019 | Co3O4 | Dodecahedron | 1—4 | ca.2200 | — | MOFs as template and | [ | |
sequential templating | ||||||||
2019 | CoS | Cube | 2—5 | 800 | — | MOFs as template and | [ | |
sequential templating | ||||||||
2019 | Co/Mn oxide | Dodecahedra | 1—3 | 2300 | 84.60 | MOFs as template and | [ | |
sequential templating |
Fig.4 “Genetic inheritance” from MOFs to Co3O4 hollow multi-shell spheres[51] All atoms are Co, and different colors indicate periodic units. Copyright 2019, American Chemical Society.
Fig.7 Illustration of the formation of multi-shelled mesoporous silica hollow nanospheres(A), SEM(B—D) and corresponding TEM(E—G) images prepared with different FC4/F127 molar ratios of 24(B, E), 48(C, F) and 72(D, G)[71] Copyright 2010, Royal Society of Chemistry.
Year | Composition | Shell number | Gas | Con.a/ppm | Response | Tb/℃ | DLe/ppm | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
2009 | Cu7S4 | 2 | NH3 | 481 | — | 25 | 89 | 48 | 127 | [ |
2011 | ZnO | 3 | Toluene | 20 | 3.09 | 300 | 0.3 | 3 | 1 | [ |
2011 | α-Fe2O3 | 3 | Ethanol | 10 | 9 | — | — | — | — | [ |
2013 | ZnO | 3 | HCHO | 5 | 5.2 | 240 | 1—3 | 2—4 | 5 | [ |
2014 | SnO2/α-Fe2O3 | 2 | Ethanol | 10 | ca.3.1 | 250 | 1 | 14 | 10 | [ |
2015 | Cr2O3 | 4 | Ethanol | 5 | 10.1 | 370 | — | — | — | [ |
2015 | SnO2 | 2 | Toluene | 20 | 33.4 | 250 | 2.3 | 5.8 | 2 | [ |
2016 | SnO2 | 3 | Acetone | 200 | 153 | 200 | 10 | 12 | 50 | [ |
2016 | WO3 | 3 | NO2 | 50 | 100 | 100 | 245 | 374 | 0.05 | [ |
2017 | ZnSnO3 | 3 | HCHO | 100 | 37.2 | 220 | 1 | 59 | 10 | [ |
2017 | Cu2O/CuO | 3 | Ethanol | 50 | ca.2.5 | 140 | — | — | — | [ |
2018 | SnO2/TiO2 | 3 | Ethanol | 200 | 9.4 | 300 | 1.7 | 13.6 | 10 | [ |
2018 | ZnO/ZnFe2O4 | 3 | Acetone | 20 | 5.9 | 140 | 5.2 | 12.8 | 5 | [ |
2018 | ZnCo2O4 | 3 | Acetone | 500 | 38.2 | 200 | 19 | 71 | 1 | [ |
2018 | Au@SnO2 | 2 | CO | 20 | 20.9 | 220 | 0.7 | 3.8 | 0.5 | [ |
2019 | Cu2O | 4 | HCHO | 200 | 9.6 | 120 | 5 | 3 | 5 | [ |
2019 | ZnSn(OH)6 | 3 | HCHO | 100 | 56.6 | 60 | 1 | 89 | 1 | [ |
2019 | ZnCo2O4 | 7 | HCHO | 100 | 7.4 | 180 | 9 | 12 | 10 | [ |
2019 | Ni/Co/Fe/Cu/Zn oxide | 3 | Ethanol | 50 | 10.91 | 80 | 85 | 160 | 0.5 | [ |
2019 | MCo2O4 | 3 | Acetone | 50 | 318 | 190 | 3 | 100 | 0.6 | [ |
(M=Mn, Ni, and Zn) | ||||||||||
2019 | Y2O3 | 3 | Methanol | 18 | — | 100 | <10 | <60 | 0.071 | [ |
Table 2 Application of hollow multi-shell structural materials in gas-sensing
Year | Composition | Shell number | Gas | Con.a/ppm | Response | Tb/℃ | DLe/ppm | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
2009 | Cu7S4 | 2 | NH3 | 481 | — | 25 | 89 | 48 | 127 | [ |
2011 | ZnO | 3 | Toluene | 20 | 3.09 | 300 | 0.3 | 3 | 1 | [ |
2011 | α-Fe2O3 | 3 | Ethanol | 10 | 9 | — | — | — | — | [ |
2013 | ZnO | 3 | HCHO | 5 | 5.2 | 240 | 1—3 | 2—4 | 5 | [ |
2014 | SnO2/α-Fe2O3 | 2 | Ethanol | 10 | ca.3.1 | 250 | 1 | 14 | 10 | [ |
2015 | Cr2O3 | 4 | Ethanol | 5 | 10.1 | 370 | — | — | — | [ |
2015 | SnO2 | 2 | Toluene | 20 | 33.4 | 250 | 2.3 | 5.8 | 2 | [ |
2016 | SnO2 | 3 | Acetone | 200 | 153 | 200 | 10 | 12 | 50 | [ |
2016 | WO3 | 3 | NO2 | 50 | 100 | 100 | 245 | 374 | 0.05 | [ |
2017 | ZnSnO3 | 3 | HCHO | 100 | 37.2 | 220 | 1 | 59 | 10 | [ |
2017 | Cu2O/CuO | 3 | Ethanol | 50 | ca.2.5 | 140 | — | — | — | [ |
2018 | SnO2/TiO2 | 3 | Ethanol | 200 | 9.4 | 300 | 1.7 | 13.6 | 10 | [ |
2018 | ZnO/ZnFe2O4 | 3 | Acetone | 20 | 5.9 | 140 | 5.2 | 12.8 | 5 | [ |
2018 | ZnCo2O4 | 3 | Acetone | 500 | 38.2 | 200 | 19 | 71 | 1 | [ |
2018 | Au@SnO2 | 2 | CO | 20 | 20.9 | 220 | 0.7 | 3.8 | 0.5 | [ |
2019 | Cu2O | 4 | HCHO | 200 | 9.6 | 120 | 5 | 3 | 5 | [ |
2019 | ZnSn(OH)6 | 3 | HCHO | 100 | 56.6 | 60 | 1 | 89 | 1 | [ |
2019 | ZnCo2O4 | 7 | HCHO | 100 | 7.4 | 180 | 9 | 12 | 10 | [ |
2019 | Ni/Co/Fe/Cu/Zn oxide | 3 | Ethanol | 50 | 10.91 | 80 | 85 | 160 | 0.5 | [ |
2019 | MCo2O4 | 3 | Acetone | 50 | 318 | 190 | 3 | 100 | 0.6 | [ |
(M=Mn, Ni, and Zn) | ||||||||||
2019 | Y2O3 | 3 | Methanol | 18 | — | 100 | <10 | <60 | 0.071 | [ |
Fig.8 Six-axe spider web graph for evaluating the working temperature of the sensors(A), selectivity of the sensors at a concentration of 200 ppm at 120 ℃(B) and resistance transients(120 ℃) to 200 ppm HCHO(C)[129] Copyright 2019, Elsevier.
Fig.9 Responses of the hollow metal oxides based sensor toward 50 ppm of ethanol(A), responses at 25 and 80 ℃(B), response curve toward ethanol gas(C) and comparing the responses with different metal oxides(D)[67] Copyright 2019, American Chemical Society.
Fig.10 Effect of working temperatures(A), dynamic response-recovery transients(B), responses at different acetone concentrations(C), resistance transient towards 20 ppm acetone(D) and proposed sensing mechanism(E, F)[93] Copyright 2018, Elsevier.
Fig.11 Response curves of sensors to 20 ppm toluene(A) and dynamic response transients of the double-shelled SnO2 cages to toluene(B)[123] Copyright 2015, Royal Society of Chemistry.
Fig.12 Gas responses of triple-shell WO3 sensor to 100 ppb NO2, 5 ppm acetone, 5 ppm CO and 5 ppm NH3 at 200 ℃ in dry(A) and wet(B) atmosphere(RH: 80% at 25 ℃), gas responses(Rg/Ra) to 50 ppb NO2 of solid(C), double-shell(D) and triple-shell(E) WO3 spheres[124] Copyright 2016, Elsevier.
[1] | Zhu Q., Zhang Y. M., Hu C. Y., Zhang J., Liu Q. J., J. Funct. Mater., 2014,45(17), 17017—17021 |
( 朱琴, 张裕敏, 胡昌义, 张瑾, 柳清菊 . 功能材料, 2014,45(17), 17017—17021) | |
[2] |
Sun Y. F., Liu S. B., Meng F. L., Liu J. Y., Jin Z., Kong L. T., Liu J. H., Sensors, 2012,12(3), 2610—2631
doi: 10.3390/s120302610 URL pmid: 22736968 |
[3] |
Potyrailo R. A., Surman C., Nagraj N., Burns A., Chem. Rev., 2011,111(11), 7315—7354
doi: 10.1021/cr2000477 URL pmid: 21899304 |
[4] | Lee J. H., Sens. Actuators B, 2009,140(1), 319—336 |
[5] |
Zhou X., Lee S., Xu Z., Yoon J., Chem. Rev., 2015,115(15), 7944—8000
doi: 10.1021/cr500567r URL pmid: 25651137 |
[6] | Tao Z. H., Li Y. W., Zhang B., Sun G., Xiao M., Bala H., Cao J. L., Zhang Z. Y., Wang Y., Sens. Actuators B, 2019,298, 126889 |
[7] |
Luo R., Li Q., Du B., Zhou S., Chen Y., Front. Mater., 2019,6, 113
doi: 10.1002/(sici)1522-7189(199805/08)6:3/4<113::aid-nt14>3.0.co;2-b URL pmid: 10223627 |
[8] |
Ruan H., Nishibori M., Itou T., Sadaoka Y., Teraoka Y., Sens. Mater, 2016,28(11), 1219—1228
doi: 10.1088/0031-9155/28/11/003 URL pmid: 6606811 |
[9] | Graef E. W., Jagannath B., Munje R., Prasad S., IEEE Sens. J., 2018,18(9), 3517—3523 |
[10] | Wang J. Q., Tang Z. A., Sens. Actuators A, 2012,176, 72—77 |
[11] | Goldenstein C. S., Spearrin R. M., Jeffries J. B., Hanson R. K., Prog. Energy Combust. Sci., 2017,60, 132—176 |
[12] | Gao X., Zhang T ., Sens. Actuators B, 2018,277, 604—633 |
[13] |
Wang C. X., Yin L. W., Zhang L. Y., Xiang D., Gao R., Sensors, 2010,10(3), 2088—2106
doi: 10.3390/s100302088 URL pmid: 22294916 |
[14] | Zhou T., Zhang R., Wang Y., Zhang T ., Sens. Actuators B, 2019,281, 885—892 |
[15] |
Koo W. T., Yu S., Choi S. J., Jang J. S., Cheong J. Y., Kim I. D., ACS Appl. Mater. Interfaces, 2017,9(9), 8201—8210
doi: 10.1021/acsami.7b01284 URL pmid: 28207233 |
[16] | Mirzaei A., Kim J. H., Kim H. W., Kim S. S., Sens. Actuators B, 2018,258, 270—294 |
[17] | Sahm T., Gurlo A., Bârsan N., Weimar U ., Sens. Actuators B, 2006,118(1), 78—83 |
[18] |
Franke M. E., Koplin T. J., Simon U., Small, 2006,2(1), 36—50
doi: 10.1002/smll.200500261 URL pmid: 17193551 |
[19] | Tang W., Wang J., Acta Phys. Chim. Sin., 2016,32(05), 1087—1104 |
( 唐伟, 王兢 . 物理化学学报, 2016,32(05), 1087—1104) | |
[20] | Fang X., Hu L., Ye C., Zhang L., Pure Appl . Pure Appl. Chem., 2010,82(11), 2185—2198 |
[21] |
Chen M., Hu L., Xu J., Liao M., Wu L., Fang X ., Small, 2011,7(17), 2449—2453
doi: 10.1002/smll.201100694 URL pmid: 21780283 |
[22] |
Hu J., Chen M., Fang X., Wu L., Chem. Soc. Rev, 2011,40(11), 5472—5491
doi: 10.1039/c1cs15103g URL pmid: 21799974 |
[23] | Ouyang W., Teng F., He J. H., Fang X., Adv. Funct. Mater., 2019,29(9), 1807672 |
[24] | Wang W. F., Qin S., Zhang R. R., Zhou P. P., Yang Q. H., Chen T. Y., Chem. J. Chinese Universities, 2019,40(9), 1979—1987 |
( 王文峰, 秦山, 张荣荣, 周盼盼, 杨庆华, 陈天云 . 高等学校化学学报, 2019,40(9), 1979—1987) | |
[25] | Li X. G., Wang Q. X., Fang Y., Yu M. M., Zhang H. S., Yang S. T., Chem. J. Chinese Universities, 2019,40(9), 1949—1954 |
( 李向南, 王秋娴, 范涌, 于明明, 张会双, 杨书廷 . 高等学校化学学报, 2019,40(9), 1949—1954) | |
[26] | Li X. L., Huang L., Duan H. J., Zhang L., Zhang H. J., Chem. J. Chinese Universities, 2019,40(8), 1662—1669 |
( 李晓莉, 黄亮, 段红娟, 张力, 张海军 . 高等学校化学学报, 2019,40(8), 1662—1669) | |
[27] | Zhang Z. M., Fang X. S., J. Inorg. Mater., 2019,34(9), 991—996 |
( 张之明, 方晓生 . 无机材料学报, 2019,34(9), 991—996) | |
[28] | Lai X. Y., Wang D., Han N., Du J., Li J., Xing C. J., Chen Y. F., Li X. T., Chem. Mater., 2010,22(10), 3033—3042 |
[29] | Yu R. B., Li Z. M., Wang D., Lai X. Y., Xing C. J., Yang M., Xing X. R., Scripta Mater., 2010,63(2), 155—158 |
[30] | Tu J. C., Li N., Lai X. Y., Chi Y., Zhang Y. J., Wang W., Li X. T., Li J. X., Qiu S. L., Appl. Surf. Sci., 2010,256(16), 5051—5055 |
[31] |
Mao D., Yao J. X., Lai X. Y., Yang M., Du J., Wang D., Small, 2011,7(5), 578—582
doi: 10.1002/smll.201001728 URL pmid: 21370458 |
[32] | Zhao J., Zheng M., Lai X., Lu H., Li N., Ling Z., Cao J., Mater. Lett, 2012,75(0), 126—129 |
[33] |
Lai X., Li P., Yang T., Tu J., Xue P., Scripta Mater., 2012,67(3), 293—296
doi: 10.1016/j.scriptamat.2012.05.008 URL |
[34] | Yang X. M., Ma M., Lai X. Y., Li P., Fang J. Z., Xue P., J. Eastern Liaoning University(Natural Science), 2013,20(3), 161—165 |
( 杨晓梅, 马萌, 赖小勇, 李鹏, 房俊卓, 薛屏 . 辽东学院学报(自然科学版), 2013,20(3), 161—165) | |
[35] | Lai X. Y., Cao K., Shen G. X., Xue P., Wang D., Hu F., Zhang J. L., Yang Q. F., Wang X. Z., Sci. Bull., 2018,63(3), 187—193 |
[36] |
Dong Z. H., Lai X. Y., Halpert J. E., Yang N. L., Yi L. X., Zhai J., Wang D., Tang Z. Y., Jiang L., Adv. Mater., 2012,24(8), 1046—1049
doi: 10.1002/adma.201104626 URL pmid: 22266874 |
[37] | Li D., Zhao X., Yu R., Wang B., Wang H., Wang D., Inorg. Chem. Front, 2018,5(3), 535—540 |
[38] | Zhao X. X., Yu R. B., Tang H. J., Mao D., Qi J., Wang B., Zhang Y., Zhao H. J., Hu W. P., Wang D., Adv. Mater., 2017,29(34), 1700550 |
[39] | Wang J., Tang H., Zhang L., Ren H., Yu R., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P., Zhang Y., Wen Y., Gu L., Ma G., Su Z., Tang Z., Zhao H., Wang D ., Nat. Energy, 2016,1, 16050 |
[40] | Xu S. M., Hessel C. M., Ren H., Yu R. B., Jin Q., Yang M., Zhao H. J., Wang D., Energy Environ. Sci., 2014,7(2), 632—637 |
[41] | Choi S. H., Park S. K., Lee J. K., Kang Y. C., J. Power Sources, 2015,284, 481—488 |
[42] |
Ren H., Yu R. B., Wang J. Y., Jin Q., Yang M., Mao D., Kisailus D., Zhao H. J., Wang D., Nano Lett., 2014,14(11), 6679—6684
doi: 10.1021/nl503378a URL pmid: 25317725 |
[43] |
Wang J. Y., Yang N. L., Tang H. J., Dong Z. H., Jin Q., Yang M., Kisailus D., Zhao H. J., Tang Z. Y., Wang D., Angew. Chem., Int. Ed., 2013,52(25), 6417—6420
doi: 10.1002/anie.201301622 URL pmid: 23649876 |
[44] |
Dong Z. H., Ren H., Hessel C. M., Wang J. Y., Yu R. B., Jin Q., Yang M., Hu Z. D., Chen Y. F., Tang Z. Y., Zhao H. J., Wang D., Adv. Mater., 2014,26(6), 905—909
doi: 10.1002/adma.201304010 URL pmid: 24510664 |
[45] |
Zong L. B., Xu P. F., Ding Y. J., Zhao K., Wang Z. M., Yan X. C., Yu R. B., Chen J., Xing X. R., Small, 2015,11(23), 2768—2773
doi: 10.1002/smll.201402320 URL pmid: 25759264 |
[46] |
Zhao X. X., Wang J. Y., Yu R. B., Wang D., J. Am. Chem. Soc., 2018,140(49), 17114—17119
doi: 10.1021/jacs.8b09241 URL pmid: 30428662 |
[47] | Wu H., Wu G., Wu Q., Wang L., Mater. Charact, 2014,97, 18—26 |
[48] | Liu J. W., Cheng J., Che R. C., Xu J. J., Liu M. M., Liu Z. W., J. Phys. Chem. C, 2013,117(1), 489—495 |
[49] | Wu L., Zhang H., Wu M., Zhong Y., Liu X., Jiao Z., Microporous Mesoporous Mater., 2016,228, 318—328 |
[50] |
Huang C. C., Huang W., Yeh C. S., Biomaterials, 2011,32(2), 556—564
doi: 10.1016/j.biomaterials.2010.08.114 URL pmid: 20875684 |
[51] |
Wang L., Wan J., Zhao Y., Yang N., Wang D ., J. Am. Chem. Soc., 2019,141(6), 2238—2241
doi: 10.1021/jacs.8b13528 URL pmid: 30714724 |
[52] | Wang H., Mao D., Qi J., Zhang Q. H., Ma X. H., Song S. Y., Gu L., Yu R. B., Wang D., Adv. Funct. Mater., 2019,29(15), 1806588 |
[53] | Waqas M., Wei Y., Mao D., Qi J., Yang Y., Wang B., Wang D., Nano Res., 2017,10(11), 3920—3928 |
[54] | Waqas M., Iqbal S., Bahadur A., Saeed A., Raheel M., Javed M., Appl. Catal., B, 2017,219, 30—35 |
[55] |
Zhao J., Zou Y. C., Zou X. X., Bai T. Y., Liu Y. P., Gao R. Q., Wang D. J., Li G. D., Nanoscale, 2014,6(13), 7255—7262
doi: 10.1039/c4nr00002a URL pmid: 24700250 |
[56] | Xu P. F., Yu R. B., Ren H., Zong L. B., Chen J., Xing X. R., Chem. Sci., 2014,5(11), 4221—4226 |
[57] |
Qi J., Zhao K., Li G. D., Gao Y., Zhao H. J., Yu R. B., Tang Z. Y., Nanoscale, 2014,6(8), 4072—4077
doi: 10.1039/c3nr06822f URL pmid: 24608859 |
[58] | You F. F., Wan J. W., Qi J., Mao D., Yang N. L., Zhang Q. H., Gu L., Wang D., Angew. Chem. Int. Ed., 2019,58(51), 1—5 |
[59] | Yu L., Hu H., Wu H. B., Lou X. W., Adv. Mater., 2017,29(15), 1604563 |
[60] | Lai X. Y., Halpert J. E., Wang D., Energy Environ. Sci., 2012,5(2), 5604—5618 |
[61] |
Li J., Lai X. Y., Xing C. J., Wang D., J. Nanosci. Nanotech., 2010,10(11), 7707—7710
doi: 10.1166/jnn.2010.2795 URL pmid: 21138015 |
[62] | Shi X., Gao T. T., Zhou G. W., Chem. Ind. Eng. Prog., 2015,34(11), 3951—3958 |
( 史雪, 高婷婷, 周国伟 . 化工进展, 2015,34(11), 3951—3958) | |
[63] |
Qi J., Lai X., Wang J., Tang H., Ren H., Yang Y., Jin Q., Zhang L., Yu R., Ma G., Su Z., Zhao H., Wang D., Chem. Soc. Rev, 2015,44(19), 6749—6773
doi: 10.1039/c5cs00344j URL pmid: 26135708 |
[64] | Ma T., Zheng L., Zhao Y., Xu Y., Zhang J., Liu X., ACS Appl. Nano Mater., 2019,2(4), 2347—2357 |
[65] | Qu F. D., Thomas T., Zhang B. X., Zhou X. X., Zhang S. D., Ruan S. P., Yang M. H., Sens. Actuators B, 2018,273, 1202—1210 |
[66] | Wang T. T., Ma S. Y., Cheng L., Jiang X. H., Zhang M., Li W. Q., Jin W. X., Mater. Lett., 2016,164, 56—59 |
[67] |
Wang G., Zhou X. R., Qin J., Liang Y., Feng B. X., Deng Y. H., Zhao Y. X., Wei J., ACS Appl. Mater. Interfaces, 2019,11(38), 35060—35067
doi: 10.1021/acsami.9b08694 URL pmid: 31469272 |
[68] | Xu J., Yao X., Wei W., Wang Z., Yu R., Mater. Res. Bull, 2017,87, 214—218 |
[69] |
Zeng Y., Wang X., Wang H., Dong Y., Ma Y., Yao J. N., Chem. Commun., 2010,46(24), 4312—4314
doi: 10.1039/c0cc00706d URL pmid: 20480089 |
[70] | Yu R. B., Li Z. M., Wang D., Lai X. Y., Xing C. J., Xing X. R., Solid State Sci., 2009,11(12), 2056—2059 |
[71] | Liu J., Hartono S. B., Jin Y. G., Li Z., Lu G. Q., Qiao S. Z., J. Mater. Chem., 2010,20(22), 4595—4601 |
[72] |
Zhou L., Zhao D., Lou X. W., Adv. Mater., 2012,24(6), 745—748
doi: 10.1002/adma.201104407 URL pmid: 22213232 |
[73] |
Sun X., Li Y., Angew. Chem., Int. Ed, 2004,43(29), 3827—3831
doi: 10.1002/anie.200353212 URL pmid: 15258947 |
[74] |
Wu C., Zhang X., Ning B., Yang J., Xie Y., Inorg. Chem, 2009,48(13), 6044—6054
doi: 10.1021/ic900416v URL pmid: 19469496 |
[75] | Li Z., Lai X., Wang H., Mao D., Xing C., Wang D ., J. Phys. Chem. C, 2009,113(7), 2792—2797 |
[76] |
Mao D., Wan J., Wang J., Wang D., Adv. Mater, 2019,31(38), 1802874
doi: 10.1002/adma.201802874 URL pmid: 30303577 |
[77] | Li M., Mao D., Wang D., Chin. Sci. Bull., 2019,64(34), 3516—3525 |
( 李萌, 毛丹, 王丹 . 科学通报, 2019,64(34), 3516—3525) | |
[78] | Du Y. M., Zhang M. J., Wang Z. C., Liu Y. R., Liu Y. J., Geng Y. L., Wang L., J. Mater. Chem. A, 2019,7(14), 8602—8608 |
[79] |
Liu W. X., Huang J. J., Yang Q., Wang S. J., Sun X. M., Zhang W. N., Liu J. F., Huo F. W., Angew. Chem. Int. Ed., 2017,56(20), 5512—5516
doi: 10.1002/anie.201701604 URL pmid: 28334498 |
[80] |
Liao Y. Y., Li Y., Wang L., Zhao Y. X., Ma D. Y., Wang B. Q., Wan Y. X., Zhong S. L., Dalton Trans., 2017,46(5), 1634—1644
doi: 10.1039/c6dt04402f URL pmid: 28098309 |
[81] | Xu H., Wang W., Angew. Chem. Int. Ed., 2007,46(9), 1489—1492 |
[82] | Yang H. X., Qian J. F., Chen Z. X., Ai X. P., Cao Y. L., J. Phys. Chem. C, 2007,111(38), 14067—14071 |
[83] | Wang L., Lou Z., Fei T., Zhang T ., J. Mater. Chem., 2011,21(48), 19331—19336 |
[84] |
Xi G., Yan Y., Ma Q., Li J., Yang H., Lu X., Wang C., Chem. Eur. J, 2012,18(44), 13949—13953
doi: 10.1002/chem.201202312 URL pmid: 23001796 |
[85] |
Zhou L., Xu H., Zhang H., Yang J., B. Harton S., Qian K., Zou J., Yu C., Chem. Commun., 2013,49(77), 8695—8697
doi: 10.1039/c3cc43867h URL pmid: 23955011 |
[86] | Xu P., Yu R., Ren H., Zong L., Chen J., Xing X., Chem. Sci, 2014,5(11), 4221—4226 |
[87] |
Wang J., Tang H., Ren H., Yu R., Qi J., Mao D., Zhao H., Wang D., Adv. Sci, 2014,1(1), 1400011
doi: 10.1002/advs.201400011 URL pmid: 27980895 |
[88] | Park G. D., Lee J. H., Lee J. K., Kang Y. C., Nano Res., 2014,7(12), 1738—1748 |
[89] | Sun H., Wang L., Chu D., Ma Z., Wang A., Mater. Lett, 2015,140, 158—161 |
[90] |
Wang Y. W., Yu L., Lou X. W., Angew. Chem. Int. Ed., 2016,55(47), 14668—14672
doi: 10.1002/anie.201608410 URL pmid: 27775208 |
[91] | Qi X. H., Zheng W. J., He G. H., Tian T. F., Du N. X., Wang L., Chem. Eng. J., 2017,309, 426—434 |
[92] | Chen X. L., Zhang H. Q., Zhang D. Q., Miao Y. C., Li G. S., Appl. Surf. Sci., 2018,435, 468—475 |
[93] | Song X. Z., Qiao L., Sun K. M., Tan Z. Q., Ma W., Kang X. L., Sun F. F., Huang T., Wang X. F., Sens. Actuators B, 2018,256, 374—382 |
[94] | Zhang P., Guan B. Y., Yu L., Lou X. W., Chem., 2018,4(1), 162—173 |
[95] |
Wang X., Chen Y., Fang Y. J., Zhang J. T., Gao S. Y., Lou X. W., Angew. Chem. Int. Ed., 2019,58(9), 2675—2679
doi: 10.1002/anie.201812387 URL pmid: 30637896 |
[96] |
Jiao C. W., Wang Z. M., Zhao X. X., Wang H., Wang J., Yu R. B., Wang D., Angew. Chem. Int. Ed., 2019,58(4), 996—1001
doi: 10.1002/anie.201811683 URL pmid: 30426625 |
[97] | Li X., Guan B. Y., Gao S., Lou X. W., Energy Environ. Sci., 2019,12(2), 648—655 |
[98] |
Yu L., Yu X. Y., Lou X. W., Adv. Mater., 2018,30(38), 1800939
doi: 10.1002/adma.201800939 URL pmid: 30009431 |
[99] |
Li C., Iqbal M., Lin J., Luo X., Jiang B., Malgras V., Wu K. C. W., Kim J., Yamauchi Y., Acc. Chem. Res., 2018,51(8), 1764—1773
doi: 10.1021/acs.accounts.8b00119 URL pmid: 29984987 |
[100] |
Song S., Zhang S., Huang S. Y., Zhang R., Yin L., Hu Y. Z., Wen T., Zhuang L., Hu B. W., Wang X. K., Chem. Eng. J., 2019,355, 697—709
doi: 10.1016/j.cej.2018.08.205 URL |
[101] | He Y., Xiang K. X., Wang Y. F., Zhou W., Zhu Y. R., Xiao L., Chen W. H., Chen X. H., Chen H., Cheng H., Lu Z. G., Carbon, 2019,154, 330—341 |
[102] |
Wong Y. J., Zhu L., Teo W. S., Tan Y. W., Yang Y., Wang C., Chen H., J. Am. Chem. Soc., 2011,133(30), 11422—11425
doi: 10.1021/ja203316q URL pmid: 21732677 |
[103] | Hwang S. H., Yun J., Jang J., Adv. Funct. Mater., 2014,24(48), 7619—7626 |
[104] | Zang J., Ye J. C., Fang X. L., Zhang X. W., Zheng M. S., Dong Q. F., Electrochim. Acta, 2015,186, 436—441 |
[105] | Yu X. Y., Yu L., Shen L. F., Song X. H., Chen H. Y., Lou X. W., Adv. Funct. Mater., 2014,24(47), 7440—7446 |
[106] |
Lai X., Li J., Korgel B. A., Dong Z., Li Z., Su F., Du J., Wang D., Angew. Chem. Int. Ed., 2011,50(12), 2738—2741
doi: 10.1002/anie.201004900 URL pmid: 21387478 |
[107] |
Li Y. T., Zhang S., Wang S. T., Leng J., Jiang C. H., Ren X. W., Zhang Z. T., Yang Y., Tang Z. L., J. Mater. Chem. A, 2019,7(33), 19234—19240
doi: 10.1039/C9TA05632G URL |
[108] |
Indra A., Menezes P. W., Das C., Schmeisser D., Driess M., Chem. Commun., 2017,53(62), 8641—8644
doi: 10.1039/c7cc03566g URL pmid: 28678263 |
[109] | Zhang J., Ren H., Wang J. Y., Qi J., Yu R. B., Wang D., Liu Y. L., J. Mater. Chem. A, 2016,4(45), 17673—17677 |
[110] | Chen M., Wang J., Tang H., Yang Y., Wang B., Zhao H., Wang D., Inorg. Chem. Front, 2016,3(8), 1065—1070 |
[111] |
Chen X. X., Ding X. Y., Wang C. S., Feng Z. Y., Xu L. Q., Gao X., Zhai Y. J., Wang D. B., Nanoscale, 2018,10(28), 13694—13701
doi: 10.1039/c8nr03854f URL pmid: 29989625 |
[112] | Wang X., Wu X. L., Guo Y. G., Zhong Y., Cao X., Ma Y., Yao J., Adv. Funct. Mater., 2010,20(10), 1680—1686 |
[113] |
Yang Y. N., Lu Y., Abbaraju P. L., Zhang J., Zhang M., Xiang G. Y., Yu C. Z., Angew. Chem. Int. Ed., 2017,56(29), 8446—8450
doi: 10.1002/anie.201701550 URL pmid: 28467690 |
[114] |
Zhang Y., Zhou G., Sun B., Zhao M., Zhang J., Chen F., Chem. Commun, 2014,50(22), 2907—2909
doi: 10.1039/c3cc49511f URL pmid: 24492437 |
[115] | Chen A. B., Zhang W. P., Liu Y., Han X. W., Bao X. H., Chin. Chem. Lett., 2007,18(8), 1017—1020 |
[116] | Wu J., Xue D., Nanosci. Nanotechnol. Lett, 2011,3(3), 371—377 |
[117] | Qu F., Shang W., Thomas T., Ruan S., Yang M ., Sens. Actuators B, 2018,265, 625—631 |
[118] | Wang L., Dou H., Li F., Deng J., Lou Z., Zhang T ., Sens. Actuators B, 2013,183, 467—473 |
[119] | Li Y., Wang S., Hao P., Tian J., Cui H., Wang X ., Sens. Actuators B, 2018,273, 751—759 |
[120] |
Zhang W. X., Chen Z. X., Yang Z. H., Phys. Chem. Chem. Phys., 2009,11(29), 6263—6268
doi: 10.1039/b821452b URL pmid: 19606338 |
[121] | Du J., Lai X. Y., Halpert J. E., Yang Y., Wang D., Sci. China: Chem., 2011,54(6), 930—935 |
[122] | Sun P., Zhou X., Wang C., Shimanoe K., Lu G. Y., Yamazoe N., J. Mater. Chem. A, 2014,2(5), 1302—1308 |
[123] |
Bing Y., Zeng Y., Liu C., Qiao L., Zheng W ., Nanoscale, 2015,7(7), 3276—3284
doi: 10.1039/c4nr06585a URL pmid: 25619428 |
[124] | Kim J. S., Yoon J. W., Hong Y. J., Kang Y. C., Abdel Hady F., Wazzan A. A., Lee J. H., Sens. Actuators B, 2016,229, 561—569 |
[125] |
Zhou T. T., Zhang T., Zhang R., Lou Z., Deng J. N., Wang L. L., ACS Appl. Mater. Interfaces, 2017,9(16), 14525—14533
doi: 10.1021/acsami.7b03112 URL pmid: 28387495 |
[126] | Zhang R., Zhang T., Zhou T., Wang L ., Sens. Actuators B, 2018,256, 479—487 |
[127] | Xiong Y., Zhu Z., Ding D., Lu W., Xue Q., Appl. Surf. Sci, 2018,443, 114—121 |
[128] | Ma J. F., Zeng Y., Chem. J. Chinese Universities, 2018,39(9), 1867—1874 |
( 马俊锋, 曾毅 . 高等学校化学学报, 2018,39(9), 1867—1874) | |
[129] |
Zhang R., Liu X. P., Zhou T. T., Zhang T., J. Colloid Interface Sci., 2019,535, 58—65
doi: 10.1016/j.jcis.2018.09.081 URL pmid: 30278330 |
[130] | Du L. Y., Gu K. K., Zhu M. M., Zhang J., Zhang M. Z., Sens. Actuators B, 2019,288, 298—306 |
[131] |
Zhou T. T., Sui N., Zhang R., Zhang T., J. Colloid Interface Sci., 2019,537, 520—527
doi: 10.1016/j.jcis.2018.11.030 URL pmid: 30471609 |
[132] |
Zhou T. T., Cao S., Zhang R., Tu J. C., Fei T., Zhang T., ACS Appl. Mater. Interfaces, 2019,11(31), 28023—28032
doi: 10.1021/acsami.9b07546 URL pmid: 31291077 |
[133] |
Zheng J. Z., Zhang T. M., Zeng H. J., Guo W., Zhao B., Sun Y. H., Li Y. Y., Jiang L., Small, 2019,15(9), 1804688
doi: 10.1002/smll.201804688 URL pmid: 30677227 |
[134] | Kukkar D., Vellingiri K., Kaur R., Bhardwaj S. K., Deep A., Kim K. H. J. N. R., Nano Res., 2019,12(2), 225—246 |
[135] | Zhang N., Ruan S., Qu F., Yin Y., Li X., Wen S., Adimi S., Yin J ., Sens. Actuators B, 2019,298, 126887 |
[136] | Hu P., Han N., Zhang X., Yao M., Cao Y., Zuo A., Yang G., Yuan F ., J. Mater. Chem., 2011,21(37), 14277—14284 |
[137] |
Wu Z., Zhang M., Yu K., Zhang S., Xie Y., Chem. Eur. J, 2008,14(17), 5346—5352
doi: 10.1002/chem.200701945 URL pmid: 18432626 |
[138] | Zhang H. G., Zhu Q. S., Zhang Y., Wang Y., Zhao L., Yu B., Adv. Funct. Mater., 2007,17(15), 2766—2771 |
[139] |
Zhang R., Shi J., Zhou T., Tu J., Zhang T ., J. Colloid Interface Sci., 2019,539, 490—496
doi: 10.1016/j.jcis.2018.12.096 URL pmid: 30611044 |
[140] | Sun P., Wang B., Zhao L., Gao H., Wang T., Yang X., Liu C., Lu G ., Sens. Actuators B, 2017,252, 322—329 |
[141] | Qiao L., Bing Y., Wang Y., Yu S., Liang Z., Zeng Y ., Sens. Actuators B, 2017,241, 1121—1129 |
[142] |
Wang C., Cheng X. Y., Zhou X., Sun P., Hu X. L., Shimanoe K., Lu G. Y., Yamazoe N., ACS Appl. Mater. Interfaces, 2014,6(15), 12031—12037
doi: 10.1021/am501063z URL pmid: 25007348 |
[143] | Lv Y. K., Yao B. H., Liu Z. Q., Liang S., Liu Q. C., Zhai K., Li Z. J., Yao H. C., IEEE Sens. J., 2019,19(14), 5413—5420 |
[144] |
Li J., Liu X., Cui J., Sun J., ACS Appl. Mater. Interfaces, 2015,7(19), 10108—10114
doi: 10.1021/am508121p URL pmid: 25919799 |
[145] | Liu X., Zhang J., Yang T., Guo X., Wu S., Wang S ., Sens. Actuators B, 2011,156(2), 918—923 |
[146] | Sun H. M., Zhang C., Peng Y. J., Gao W., New J. Chem., 2019,43(12), 4721—4726 |
[1] | 张振, 毛丹, 杨梅, 于然波. 中空多壳层结构在电磁波领域中的应用[J]. 高等学校化学学报, 2021, 42(5): 1395. |
[2] | 王鹏, 毛丹, 万家炜, 祁琪, 杜江, 王丹. 中空多壳层TiO2填充对环氧树脂复合材料力学性能的影响[J]. 高等学校化学学报, 2021, 42(10): 3218. |
[3] | 马俊锋, 曾毅. Au纳米颗粒负载SnO2双层空心立方体的CO气敏性能[J]. 高等学校化学学报, 2018, 39(9): 1867. |
[4] | 王茉, 李晓伟, 邵长路, 赵英倩, 辛佳玉, 韩朝翰, 李兴华, 刘益春. p-CuO/n-In2O3异质结纳米纤维的制备及气敏特性[J]. 高等学校化学学报, 2017, 38(9): 1524. |
[5] | 许金宝, 王威, 王策. 铜掺杂氧化锌纳米纤维宽线性响应乙醇气体传感器[J]. 高等学校化学学报, 2017, 38(6): 942. |
[6] | 李光耀, 王煜, 曹尹亮, 肖忠良, 黄颖, 冯泽猛, 印遇龙, 曹忠. 二氧化锡中空微球用于快速灵敏检测硫化氢[J]. 高等学校化学学报, 2017, 38(11): 1953. |
[7] | 周煦成, 李志华, 邹小波, 石吉勇, 黄晓玮, 胡雪桃. 基于聚苯胺-镍酞菁多孔渗透薄膜的氨气传感器[J]. 高等学校化学学报, 2016, 37(3): 460. |
[8] | 杨敏, 刘晓旸, 赵旭东, 李本仙, 王晓峰. γ-Fe2O3纳米纤维的丙酮敏感特性[J]. 高等学校化学学报, 2014, 35(8): 1615. |
[9] | 黄晓玮, 邹小波, 赵杰文, 石吉勇, 李志华. 新型室温硫化氢纳米传感器的制备及性能[J]. 高等学校化学学报, 2014, 35(6): 1175. |
[10] | 薛严冰,唐祯安 . CO在SnO2(110)面吸附特性的密度泛函研究[J]. 高等学校化学学报, 2009, 30(3): 583. |
[11] | 司书峰, 杨松林, 延玺 . Al掺杂α-Fe2O3材料的制备、表征和气敏特性[J]. 高等学校化学学报, 2007, 28(11): 2035. |
[12] | 魏广芬 唐祯安 陈正豪 余隽 王立鼎 闫桂珍. 气体传感器阵列信号的盲分离研究[J]. 高等学校化学学报, 2006, 27(1): 55. |
[13] | 鲜跃仲, 薛建, 张文, 金利通, 姜学国, 晏双龙. 新型二氧化硫气体电化学传感器的研究[J]. 高等学校化学学报, 2000, 21(9): 1375. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||