高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (5): 909-923.doi: 10.7503/cjcu20190646
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2019-12-10
出版日期:
2020-05-10
发布日期:
2020-02-24
通讯作者:
刘阳
E-mail:yliu@nankai.edu.cn
基金资助:
ZHAO Yu1,CAO Wanqing1,2,LIU Yang1,2,*()
Received:
2019-12-10
Online:
2020-05-10
Published:
2020-02-24
Contact:
Yang LIU
E-mail:yliu@nankai.edu.cn
Supported by:
摘要:
近年来, 大量研究结果表明纳米技术可显著提高传统药物的疾病治疗效果, 并在生物医学领域引起了广泛关注. 迄今, 多种聚合物纳米体系已被研发并用于药物的靶向递送. 随着纳米技术的不断发展, 各类生物微环境响应的功能基团也被应用于构筑新型药物载体, 以提高患病部位的药物富集及减少药物的毒副作用. 聚合物纳米药物载体在癌症治疗、 代谢类疾病治疗及抗菌等方面展现出巨大潜力. 本文系统评述了聚合物纳米药物载体的最新研究进展及在生物医药方面的应用.
中图分类号:
赵宇, 曹琬晴, 刘阳. 聚合物纳米药物载体的研究进展[J]. 高等学校化学学报, 2020, 41(5): 909-923.
ZHAO Yu, CAO Wanqing, LIU Yang. Recent Advances in Polymeric Nano-sized Carrier Systems [J]. Chemical Journal of Chinese Universities, 2020, 41(5): 909-923.
Fig.3 Selected examples of PEG-containing block polymers which can be self-assembled to form polymeric micelles for drug delivery(A) and the representative structure of polymeric micelles(B)[12] Copyright 2018, The Royal Society of Chemistry.
Fig.7 Cocoon-like DNA nanoclew integrated with an acid-sensitive nanocapsule encapsulating DNase Ⅰ for controlled intracellular release of DOX[41](A) and scheme illustration showing the preparation of the tumor pH-labile linkage-bridged block copolymer PEG5K-Dlinkm-PLGA11K(B)[42] (A) Copyright 2014, American Chemical Society; (B) copyright 2016, Elsevier.
Fig.9 Cationic polyplex containing thioketal linkages for ROS-activated intracellular DNA release(A)[59] and illustration of the formation of “triple-interaction”-stabilized siRNA nanomedicine and ROS responsiveness, active targeting, and combinational RNAi therapy in glioblastoma(B)[60] (A) Copyright 2013, Wiley Online Library; (B) Copyright 2019, Wiley Online Library.
Fig.10 Schematic design of the photo-cleavable polyprodrug(LHP)-loaded polyvinyl alcohol/sodium alginate(PVA/SA) wound dressing and its UV-responsive antibacterial property[67] Copyright 2017, the Royal Society of Chemistry.
Drug | Material | Stimuli-responsive condition | Application | Ref. | |||
---|---|---|---|---|---|---|---|
Doxorubicin | PEG-b-P(Lys/CA-DOX), PAE-b-P(Lys/CA-DOX) | pH | Cancer | [ | |||
Doxorubicin | DNA | pH | Cancer | [ | |||
Doxorubicin | PEG-b-PEYM | pH | Cancer | [ | |||
Doxorubicin | PLLA-PEG | pH | Cancer | [ | |||
Doxorubicin | PVA,m-dextran | pH | Cancer | [ | |||
Doxorubicin | PETMP-AU-PEG | pH | Cancer | [ | |||
Factor-related apoptosis-inducing ligand and Doxorubicin | m-HA | pH | Cancer | [ | |||
miRNA | AAm and APm | pH | Cancer | [ | |||
Doxorubicin, Loperamide | PLGA | pH | Cancer, central analgesic effects | [ | |||
Methotrexate | Chitosan | pH | Central nervous systems malignancies | [ | |||
Salvianolic acid B, tanshinone IIA and panax notoginsenoside | PLGA | pH | Cerebral ischemia reperfusion(I/R) injury | [ | |||
Doxorubicin | Gelatin and polydopamine | pH, enzyme, NIR | Cancer | [ | |||
Doxorubicin/indocyanine green | PLGA | NIR | Cancer | [ | |||
Levofloxacin | PVA/SA | UV | Antibiosis | [ | |||
Curcumin | PEG-pLys | ROS | Alzheimer’s disease | [ | |||
DNA | Poly(amino thioketal) | ROS | Cancer | [ | |||
Gemcitabine and anti-PD-L1 | PVA-TSPBA | ROS | Cancer | [ | |||
siRNA | PEG-b-P(Gu/Hb)/Ang-PEG-b-PGu | ROS | Cancer | [ | |||
MTO | PEG-PolyMTO | ROS | Cancer | [ | |||
Doxorubicin | poly(ether-urethane) | GSH | Cancer | [ | |||
Lira | PCGA-PEG-PCGA | Heat | Diabetes | [ | |||
Doxorubicin | PAMAM | Radiation | Cancer | [ | |||
Monoclonal Antibodies | 2-methacryloyloxyethyl phosphorylcholine | Enzyme | Cancer | [ | |||
Vancomycin | PEG-b-PP and PEG-b-PC | Enzyme | Antibiosis | [ | |||
Insulin | Chitosan/alginate and m-dextran | Glucose | Diabetes | [ | |||
Insulin | PEG-b-(PAA-co-PAAPBA) | Glucose | Diabetes | [ | |||
Insulin | P(NIPAM-Dex-PBA) | Glucose | Diabetes | [ | |||
KLVFF | PCL-b-PAE,PCL-b-PEG | — | Alzheimer’s disease | [ | |||
KLVFF and Beclin-1 | PEG | — | Alzheimer’s disease | [ | |||
Docetaxel | PEG-DMPE, DMPC,DHPC | — | Cancer | [ | |||
Rivastigmine | Poly(n-butylcyanoacrylate) | — | Alzheimer’s disease | [ | |||
p53 protein | AAm and N-azidodeca(ethylene glycol)ethylacrylamide | — | Cancer | [ | |||
Ciprofloxacin | PEG-b-cholesterol | — | Antibiosis | [ | |||
Ciprofloxacin | PLGA | — | Antibiosis | [ |
Table 1 Recent advances in polymeric nano-sized carrier systems
Drug | Material | Stimuli-responsive condition | Application | Ref. | |||
---|---|---|---|---|---|---|---|
Doxorubicin | PEG-b-P(Lys/CA-DOX), PAE-b-P(Lys/CA-DOX) | pH | Cancer | [ | |||
Doxorubicin | DNA | pH | Cancer | [ | |||
Doxorubicin | PEG-b-PEYM | pH | Cancer | [ | |||
Doxorubicin | PLLA-PEG | pH | Cancer | [ | |||
Doxorubicin | PVA,m-dextran | pH | Cancer | [ | |||
Doxorubicin | PETMP-AU-PEG | pH | Cancer | [ | |||
Factor-related apoptosis-inducing ligand and Doxorubicin | m-HA | pH | Cancer | [ | |||
miRNA | AAm and APm | pH | Cancer | [ | |||
Doxorubicin, Loperamide | PLGA | pH | Cancer, central analgesic effects | [ | |||
Methotrexate | Chitosan | pH | Central nervous systems malignancies | [ | |||
Salvianolic acid B, tanshinone IIA and panax notoginsenoside | PLGA | pH | Cerebral ischemia reperfusion(I/R) injury | [ | |||
Doxorubicin | Gelatin and polydopamine | pH, enzyme, NIR | Cancer | [ | |||
Doxorubicin/indocyanine green | PLGA | NIR | Cancer | [ | |||
Levofloxacin | PVA/SA | UV | Antibiosis | [ | |||
Curcumin | PEG-pLys | ROS | Alzheimer’s disease | [ | |||
DNA | Poly(amino thioketal) | ROS | Cancer | [ | |||
Gemcitabine and anti-PD-L1 | PVA-TSPBA | ROS | Cancer | [ | |||
siRNA | PEG-b-P(Gu/Hb)/Ang-PEG-b-PGu | ROS | Cancer | [ | |||
MTO | PEG-PolyMTO | ROS | Cancer | [ | |||
Doxorubicin | poly(ether-urethane) | GSH | Cancer | [ | |||
Lira | PCGA-PEG-PCGA | Heat | Diabetes | [ | |||
Doxorubicin | PAMAM | Radiation | Cancer | [ | |||
Monoclonal Antibodies | 2-methacryloyloxyethyl phosphorylcholine | Enzyme | Cancer | [ | |||
Vancomycin | PEG-b-PP and PEG-b-PC | Enzyme | Antibiosis | [ | |||
Insulin | Chitosan/alginate and m-dextran | Glucose | Diabetes | [ | |||
Insulin | PEG-b-(PAA-co-PAAPBA) | Glucose | Diabetes | [ | |||
Insulin | P(NIPAM-Dex-PBA) | Glucose | Diabetes | [ | |||
KLVFF | PCL-b-PAE,PCL-b-PEG | — | Alzheimer’s disease | [ | |||
KLVFF and Beclin-1 | PEG | — | Alzheimer’s disease | [ | |||
Docetaxel | PEG-DMPE, DMPC,DHPC | — | Cancer | [ | |||
Rivastigmine | Poly(n-butylcyanoacrylate) | — | Alzheimer’s disease | [ | |||
p53 protein | AAm and N-azidodeca(ethylene glycol)ethylacrylamide | — | Cancer | [ | |||
Ciprofloxacin | PEG-b-cholesterol | — | Antibiosis | [ | |||
Ciprofloxacin | PLGA | — | Antibiosis | [ |
[1] | Zhao Y., Zheng C. X., Liu Y., Polymeric Nanomedicine, 2019, Springer Singapore, Singapore, 233—267 |
[2] | Wilhelm S., Tavares A. J., Dai Q., Ohta S., Audet J., Dvorak H. F., Chan W. C., Nature Reviews Materials, 2016,1(5), 1—12 |
[3] |
Govender T., Stolnik S., Xiong C. D., Zhang S., Illum L., Davis S. S., Journal of Controlled Release, 2001,75(3), 249—258
doi: 10.1016/s0168-3659(01)00353-4 URL pmid: 11489313 |
[4] |
Cho K., Wang X., Nie S., Shin D. M., Clinical Cancer Research, 2008,14(5), 1310—1316
doi: 10.1158/1078-0432.CCR-07-1441 URL pmid: 18316549 |
[5] |
Zhu L., Kate P., Torchilin V. P., ACS Nano, 2012,6(4), 3491—3498
doi: 10.1021/nn300524f URL pmid: 22409425 |
[6] |
Shi D., Mi G., Shen Y., Webster T. J., Nanoscale, 2019,11(32), 15057—15071
doi: 10.1039/c9nr03931g URL pmid: 31369016 |
[7] |
Yan M., Du J. J., Gu Z., Liang M., Hu Y. F., Zhang W. J., Priceman S., Wu L. L., Zhou Z. H., Liu Z., Segura T., Tang Y., Lu Y. F., Nature Nanotechnology, 2010,5(1), 48—53
doi: 10.1038/nnano.2009.341 URL pmid: 19935648 |
[8] | Zhao M., Hu B., Gu Z., Joo K. I., Wang P., Tang Y., Nano Today, 2013,8(1), 11—20 |
[9] |
Hu Q., Sun W., Lu Y., Bomba H. N., Ye Y., Jiang T., Isaacson A. J., Gu Z., Nano Lett, 2016,16(2), 1118—1126
doi: 10.1021/acs.nanolett.5b04343 URL pmid: 26785163 |
[10] |
Liu C., Wen J., Meng Y., Zhang K., Zhu J., Ren Y., Qian X., Yuan X., Lu Y., Kang C., Adv. Mater, 2015,27(2), 292—297
doi: 10.1002/adma.201403387 URL pmid: 25400269 |
[11] | Liang S., Liu Y., Jin X., Liu G., Wen J., Zhang L. L., Li J., Yuan X. B., Chen I. S. Y., Chen W., Wang H., Shi L. Q., Zhu X. Y., Lu Y. F., Nano Research, 2016,9(4), 1022—1031 |
[12] |
Emeline R., Rumiana D., Petra S., Frederik R. W., Katharina L., Chem. Soc. Rev., 2018,47, 8572—8610
doi: 10.1039/c8cs00162f URL pmid: 30177983 |
[13] |
Li L. H., Guo K., Lu J., Venkatraman S. S., Luo D., Ng K. C., Ling E. A., Moochhala S., Yang Y. Y., Biomaterials, 2008,29(10), 1509—1517
doi: 10.1016/j.biomaterials.2007.11.014 URL pmid: 18155137 |
[14] |
Saw P. E., Yu M., Choi M., Lee E., Jon S., Farokhzad O. C., Biomaterials, 2017,123, 118—126
doi: 10.1016/j.biomaterials.2017.01.040 URL pmid: 28167390 |
[15] |
Cheng T. J., Ma R. J., Zhang Y. M., Ding Y. X., Liu J. J., Ou H. L., An Y. L., Liu J. F., Shi L. Q., Chemical Communications, 2015,51(81), 14985—14988
doi: 10.1039/c5cc05854f URL pmid: 26307207 |
[16] |
Lu Y., Guo Z., Zhang Y., Li C., Zhang Y., Guo Q., Chen Q., Chen X., He X., Liu L., Ruan C., Sun T., Ji B., Lu W., Jiang C., Adv. Sci.(Weinh), 2019,6(4), 1801586
doi: 10.1002/advs.201801586 URL pmid: 30828531 |
[17] |
Jain K. K., Nanomedicine, 2012,7(8), 1225—1233
doi: 10.2217/nnm.12.86 URL pmid: 22931448 |
[18] |
Yemisci M., Gursoy-Ozdemir Y., Caban S., Bodur E., Capan Y., Dalkara T ., Methods in Enzymolgy, 2012,508, 253—269
doi: 10.1016/B978-0-12-391860-4.00013-6 URL pmid: 22449930 |
[19] |
Zhang X., Chen G., Wen L., Yang F., Shao A. L., Li X., Long W., Mu L., European Journal of Pharmaceutical Sciences, 2013,48(4/5), 595—603
doi: 10.1016/j.ejps.2013.01.007 URL pmid: 23354153 |
[20] |
Gelperina S., Maksimenko O., Khalansky A., Vanchugova L., Shipulo E., Abbasova K., Berdiev R., Wohlfart S., Chepurnova N., Kreuter J ., European Journal of Pharmaceutics Biopharmaceutics, 2010,74(2), 157—163
doi: 10.1016/j.ejpb.2009.09.003 URL pmid: 19755158 |
[21] |
Wilson B., Samanta M. K., Santhi K., Kumar K. P. S., Paramakrishnan N., Suresh B., Brain Research, 2008,1200, 159—168
doi: 10.1016/j.brainres.2008.01.039 URL pmid: 18291351 |
[22] |
Kolter M., Ott M., Hauer C., Reimold I., Fricker G ., J. Control Release, 2015,197, 165—179
doi: 10.1016/j.jconrel.2014.11.005 URL pmid: 25445700 |
[23] |
Dhanikula R. S., Hammady T., Hildgen P., J. Pharm. Sci., 2009,98(10), 3748—3760
doi: 10.1002/jps.21669 URL pmid: 19156840 |
[24] |
Ke W. L., Shao K., Huang R. Q., Han L., Liu Y., Li J. F., Kuang Y. Y., Ye L. Y., Lou J. N., Jiang C., Biomaterials, 2009,30(36), 6976—6985
doi: 10.1016/j.biomaterials.2009.08.049 URL |
[25] |
Huang R., Ke W., Han L., Liu Y., Shao K., Ye L., Lou J., Jiang C., Pei Y ., J. Cereb. Blood Flow Metab., 2009,29(12), 1914—1923
doi: 10.1038/jcbfm.2009.104 URL pmid: 19654588 |
[26] |
Wu S. Y., Chou H. Y., Yuh C. H., Mekuria S. L., Kao Y. C., Tsai H. C., Advanced Science, 2018,5(2), 1700339
doi: 10.1002/advs.201700339 URL pmid: 29610720 |
[27] |
Wagner V., Dullaart A., Bock A. K., Zweck A., Nat. Biotechnol., 2006,24(10), 1211—1217
doi: 10.1038/nbt1006-1211 URL pmid: 17033654 |
[28] |
Azadi A., Hamidi M., Rouini M. R., Int. J. Biol. Macromol., 2013,62, 523—530
doi: 10.1016/j.ijbiomac.2013.10.004 URL pmid: 24120961 |
[29] |
Wang C., Wang J., Zhang X., Yu S., Wen D., Hu Q., Ye Y., Bomba H., Hu X., Liu Z., Dotti G., Gu Z., Science Translational Medicine, 2018, 10(429), eaan3682
doi: 10.1126/scitranslmed.aan3682 URL pmid: 29467299 |
[30] | He G., Chen S., Xu Y. J., Miao Z. H., Ma Y., Qian H. S., Lu Y., Zha Z. B., Materials Horizons, 2019,6(4), 711—716 |
[31] | Mo R., Gu Z ., Materials Today, 2016,19(5), 274—283 |
[32] |
Sun T., Zhang Y. S., Pang B., Hyun D. C., Yang M., Xia Y., Angew. Chem., Int. Ed., 2014,53(46), 12320—12364
doi: 10.1002/anie.201403036 URL pmid: 25294565 |
[33] |
Estrella V., Chen T., Lloyd M., Wojtkowiak J., Cornnell H. H., Ibrahim-Hashim A., Bailey K., Balagurunathan Y., Rothberg J. M., Sloane B. F., Johnson J., Gatenby R. A., Gillies R. J., Cancer Res., 2013,73(5), 1524—1535
doi: 10.1158/0008-5472.CAN-12-2796 URL pmid: 23288510 |
[34] |
McMahon H. T., Boucrot E., Nat. Rev. Mol. Cell Biol., 2011,12(8), 517—533
doi: 10.1038/nrm3151 URL pmid: 21779028 |
[35] |
Mayor S., Pagano R. E., Nat. Rev. Mol. Cell Biol., 2007,8(8), 603—612
doi: 10.1038/nrm2216 URL pmid: 17609668 |
[36] |
Gu Z., Aimetti A. A., Wang Q., Dang T. T., Zhang Y., Veiseh O., Cheng H., Langer R. S., Anderson D. G., ACS Nano, 2013,7(5), 4194—4201
doi: 10.1021/nn400630x URL pmid: 23638642 |
[37] |
Yu J. C., Chen Y. L., Zhang Y. Q., Yao X. K., Qian C. G., Huang J., Zhu S., Jiang X. Q., Shen Q. D., Gu Z., Chem. Commun.(Cambridge, U.K.), 2014,50(36), 4699—4702
doi: 10.1039/c3cc49870k URL pmid: 24671329 |
[38] |
Tang R., Ji W., Panus D., Palumbo R. N., Wang C., J. Controlled Release, 2011,151(1), 18—27
doi: 10.1016/j.jconrel.2010.12.005 URL pmid: 21194551 |
[39] |
Tang R., Ji W., Wang C., Macromol. Biosci, 2010,10(2), 192—201
doi: 10.1002/mabi.200900229 URL pmid: 19904722 |
[40] |
Takemoto H., Miyata K., Hattori S., Ishii T., Suma T., Uchida S., Nishiyama N., Kataoka K., Angew. Chem., Int. Ed, 2013,52(24), 6218—6221
doi: 10.1002/anie.201300178 URL pmid: 23630117 |
[41] |
Sun W., Jiang T., Lu Y., Reiff M., Mo R., Gu Z ., J. Am. Chem. Soc., 2014,136(42), 14722—14725
doi: 10.1021/ja5088024 URL pmid: 25336272 |
[42] |
Xu C. F., Zhang H. -B., Sun C. Y., Liu Y., Shen S., Yang X. Z., Zhu Y. H., Wang J., Biomaterials, 2016,88, 48—59
doi: 10.1016/j.biomaterials.2016.02.031 URL pmid: 26945455 |
[43] | Tao Y., Liu S., Zhang Y., Chi Z., Xu J ., Polymer Chemistry, 2018,9(7), 878—884 |
[44] | Xu J. H., Gao F. P., Li L. L., Ma H. L., Fan Y. S., Liu W., Guo S. S., Zhao X. Z., Wang H., Microporous Mesoporous Mater., 2013,182, 165—172 |
[45] | Radhakrishnan K., Tripathy J., Gnanadhas D. P., Chakravortty D., Raichur A. M., RSC Adv., 2014,4(86), 45961—45968 |
[46] |
Schneider G. F., Subr V., Ulbrich K., Decher G., Nano Lett., 2009,9(2), 636—642
doi: 10.1021/nl802990w URL pmid: 19170551 |
[47] | Jiang T., Mo R., Bellotti A., Zhou J., Gu Z., Adv. Funct. Mater, 2014,24(16), 2295—2304 |
[48] |
Han L., Liu C. Y., Qi H. Z., Zhou J. H., Wen J., Wu D., Xu D., Qin M., Ren J., Wang Q. X., Long L. X., Liu Y., Chen I., Yuan X. B., Lu Y. F., Kang C. S., Advanced Materials, 2019,31(19), 1805697
doi: 10.1002/adma.201805697 URL pmid: 30773720 |
[49] |
Saito G., Swanson J. A., Lee K. D., Adv. Drug Delivery Rev., 2003,55(2), 199—215
doi: 10.1016/s0169-409x(02)00179-5 URL pmid: 12564977 |
[50] |
Kuppusamy P., Li H., Ilangovan G., Cardounel A. J., Zweier J. L., Yamada K., Krishna M. C., Mitchell J. B., Cancer Res., 2002,62(1), 307—312
URL pmid: 11782393 |
[51] |
Ryu J. H., Chacko R. T., Jiwpanich S., Bickerton S., Babu R. P., Thayumanavan S., J. Am. Chem. Soc., 2010,132(48), 17227—17235
doi: 10.1021/ja1069932 URL pmid: 21077674 |
[52] |
Zhao M., Liu Y., Hsieh R. S., Wang N., Tai W., Joo K. I., Wang P., Gu Z., Tang Y., J. Am. Chem. Soc., 2014,136(43), 15319—15325
doi: 10.1021/ja508083g URL pmid: 25289975 |
[53] |
Wang Y., Zhu L., Wang Y., Li L., Lu Y., Shen L., Zhang L. W., ACS Applied Materials & Interfaces, 2016,8(51), 35106—35113
doi: 10.1021/acsami.6b14639 URL pmid: 27966861 |
[54] |
Bachelder E. M., Beaudette T. T., Broaders K. E., Dashe J., Frechet J. M. J., J. Am. Chem. Soc., 2008,130(32), 10494—10495
doi: 10.1021/ja803947s URL pmid: 18630909 |
[55] |
Wilson D. S., Dalmasso G., Wang L., Sitaraman S. V., Merlin D., Murthy N., Nat. Mater., 2010,9(11), 923—928
doi: 10.1038/nmat2859 URL pmid: 20935658 |
[56] |
Napoli A., Valentini M., Tirelli N., Mueller M., Hubbell J. A., Nat. Mater., 2004,3(3), 183—189
doi: 10.1038/nmat1081 URL pmid: 14991021 |
[57] | Ren H., Wu Y., Ma N., Xu H., Zhang X ., Soft Matter, 2012,8(5), 1460—1466 |
[58] |
Staff R. H., Gallei M., Mazurowski M., Rehahn M., Berger R., Landfester K., Crespy D., ACS Nano, 2012,6(10), 9042—9049
doi: 10.1021/nn3031589 URL pmid: 23020219 |
[59] |
Shim M. S., Xia Y., Angew. Chem. Int. Ed. Engl., 2013,52(27), 6926—6929
doi: 10.1002/anie.201209633 URL pmid: 23716349 |
[60] |
Zheng M., Liu Y. Y., Wang Y. B., Zhang D. Y., Zou Y., Ruan W. M., Yin J. L., Tao W., Park J. B., Shi B. Y., Advanced Materials, 2019,31(37), 1903277
doi: 10.1002/adma.201903277 URL pmid: 31348581 |
[61] | Xu X., Saw P. E., Tao W., Li Y., Ji X., Bhasin S., Liu Y., Ayyash D., Rasmussen J., Huo M., Advanced Materials, 2017,29(33), 1700141 |
[62] |
Ta T., Porter T. M., J. Controlled Release, 2013,169(1/2), 112—125
doi: 10.1016/j.jconrel.2013.03.036 URL pmid: 23583706 |
[63] | Parrish E., Seeger S. C., Composto R. J., Macromolecules, 2018,51(10), 3597—3607 |
[64] |
Mura S., Nicolas J., Couvreur P ., Nature Materials, 2013,12(11), 991—1003
doi: 10.1038/nmat3776 URL pmid: 24150417 |
[65] |
Kang H., Liu H., Zhang X., Yan J., Zhu Z., Peng L., Yang H., Kim Y., Tan W ., Langmuir, 2011,27(1), 399—408
doi: 10.1021/la1037553 URL pmid: 21126095 |
[66] |
Schroeder A., Goldberg M. S., Kastrup C., Wang Y., Jiang S., Joseph B. J., Levins C. G., Kannan S. T., Langer R., Anderson D. G., Nano Letters, 2012,12(6), 2685—2689
doi: 10.1021/nl2036047 URL pmid: 22432731 |
[67] |
Pang Q., Zheng X., Luo Y., Ma L., Gao C ., Journal of Materials Chemistry B, 2017,5(45), 8975—8982
doi: 10.1039/c7tb01696d URL pmid: 32264124 |
[68] |
Zheng M., Yue C., Ma Y., Gong P., Zhao P., Zheng C., Sheng Z., Zhang P., Wang Z., Cai L ., ACS Nano, 2013,7(3), 2056—2067
doi: 10.1021/nn400334y URL pmid: 23413798 |
[69] |
Yoo H. S., Lee E. A., Park T. G., Journal of Controlled Release, 2002,82(1), 17—27
doi: 10.1016/s0168-3659(02)00088-3 URL pmid: 12106973 |
[70] | Chen Y., Li Y., Shen W., Li K., Yu L., Chen Q., Ding J ., Scientific Reports, 2016,6(1), 2045—2322 |
[71] |
Li Y. M., Liu G. H., Wang X. R., Hu J. M., Liu S. Y., Angew. Chem.-Int. Ed., 2016,55(5), 1760—1764
doi: 10.1002/anie.201509401 URL pmid: 26694087 |
[72] |
Wang B., Ma R., Liu G., Li Y., Liu X., An Y., Shi L ., Langmuir, 2009,25(21), 12522—12528
doi: 10.1021/la901776a URL pmid: 19810675 |
[73] | Wu Z. M., Zhang X. G., Guo H. L., Li C. X., Yu D. M., Journal of Materials Chemistry, 2012,22(42), 22788—22796 |
[74] |
Qu A. T., Huang F., Li A., Yang H. R., Zhou H., Long J. F., Shi L. Q., Chemical Communications, 2017,53(7), 1289—1292
doi: 10.1039/c6cc07803f URL pmid: 28067349 |
[75] |
Luo Q., Lin Y. X., Yang P. P., Wang Y., Qi G. B., Qiao Z. Y., Li B. N., Zhang K., Zhang J. P., Wang L., Nature Communications, 2018,9(1), 1—12
doi: 10.1038/s41467-017-02088-w URL pmid: 29317637 |
[76] |
Wilson B., Samanta M. K., Santhi K., Kumar K. P. S., Paramakrishnan N., Suresh B., Brain Research, 2008,1200, 159—168
doi: 10.1016/j.brainres.2008.01.039 URL pmid: 18291351 |
[77] |
Liu X., Nielsen L. H., Klodzinska S. N., Nielsen H. M., Qu H., Christensen L. P., Rantanen J., Yang M., Eur. J. Pharm. Biopharm., 2018,123, 42—49
doi: 10.1016/j.ejpb.2017.11.004 URL pmid: 29129734 |
[78] | Zheng C. X., Zhao Y., Liu Y., Chin. J. Polym. Sci., 2018,36(3), 322—346 |
[79] |
Bae Y. H., Park K., J. Controlled Release, 2011,153(3), 198—205
doi: 10.1016/j.jconrel.2011.06.001 URL pmid: 21663778 |
[80] |
Gao H., Xiong J., Cheng T., Liu J., Chu L., Liu J., Ma R., Shi L ., Biomacromolecules, 2013,14(2), 460—467
doi: 10.1021/bm301694t URL pmid: 23281663 |
[81] |
Mo R., Sun Q., Xue J., Li N., Li W., Zhang C., Ping Q., Adv. Mater, 2012,24(27), 3659—3665
doi: 10.1002/adma.201201498 URL pmid: 22678851 |
[82] |
Cui D., Huang J., Zhen X., Li J., Jiang Y., Pu K., Angew. Chem. Ed., 2019,58(18), 5920—5924
doi: 10.1002/anie.201814730 URL pmid: 30793456 |
[83] |
Zhao L., Xiao C., Wang L., Gai G., Ding J., Chem. Commun.(Cambridge, U.K.), 2016,52(49), 7633—7652
doi: 10.1039/c6cc02202b URL pmid: 27194104 |
[84] | Podual K., Doyle F. J., Peppas N. A., Polymer, 2000,41(11), 3975—3983 |
[85] |
Selkoe D. J., Ann. Neurol., 2013,74(3), 328—336
doi: 10.1002/ana.24001 URL pmid: 25813842 |
[86] |
Watanabe K. I., Nakamura K., Akikusa S., Okada T., Kodaka M., Konakahara T., Okuno H., Biochem. Biophys. Res. Commun., 2002,290(1), 121—124
doi: 10.1006/bbrc.2001.6191 URL pmid: 11779142 |
[87] | Liu F., Du W., Sun Y., Zheng J., Dong X., Front. Chem. Sci. Eng., 2014,8(4), 433—444 |
[88] |
Zhao Y., Cai J., Liu Z., Li Y., Zheng C., Zheng Y., Chen Q., Chen H., Ma F., An Y., Xiao L., Jiang C., Shi L., Kang C., Liu Y ., Nano Lett, 2019,19(2), 674—683
doi: 10.1021/acs.nanolett.8b03644 URL pmid: 30444372 |
[89] | Munoz-Bonilla A., Fernandez-Garcia M., Prog. Polym. Sci, 2012,37(2), 281—339 |
[90] |
Zhang L., Pornpattananangkul D., Hu C. M. J., Huang C. M., Curr. Med. Chem., 2010,17(6), 585—594
doi: 10.2174/092986710790416290 URL pmid: 20015030 |
[91] |
Liu Y., Busscher H. J., Zhao B., Li Y., Zhang Z., van der Mei H. C., Ren Y., Shi L., ACS Nano, 2016,10(4), 4779—4789
doi: 10.1021/acsnano.6b01370 URL pmid: 26998731 |
[1] | 严磊, 毛秀海, 左小磊. 框架核酸辅助的仿生膜构建[J]. 高等学校化学学报, 2020, 41(7): 1415-1425. |
[2] | 张丹维, 王辉, 黎占亭. 水溶性三维有序超分子和共价有机聚合物[J]. 高等学校化学学报, 2020, 41(6): 1139-1150. |
[3] | 戴利均, 孙昭艳. 聚合物纳米复合体系中聚合物结构及动力学研究进展[J]. 高等学校化学学报, 2020, 41(5): 924-935. |
[4] | 左晓玲, 吴翀, 黄安荣, 罗姣莲, 李竹玉, 王梦, 周颖, 余洪钠, 郭建兵. 可见光响应的荧光增白剂基多功能光引发体系[J]. 高等学校化学学报, 2020, 41(4): 811-820. |
[5] | 潘国勇,荔雅文,马立军,马宇帆,艾文婷,王振国,侯欣慧,戈里戈瑞·齐格亚诺夫,王卓. 基于正电荷和光热协同效应的新型半导体聚合物纳米抗菌材料[J]. 高等学校化学学报, 2020, 41(4): 670-681. |
[6] | 罗威, 梁佑才, 胡志诚, 唐浩然, 刘孝诚, 邢晔彤, 黄飞. 新型亲水性共轭聚合物的制备及光催化制氢性能[J]. 高等学校化学学报, 2020, 41(3): 456-464. |
[7] | 刘东枚,苏雅静,李姗姗,许奇炜,李夏. 4-(4-羧基苯氧基)间苯二甲酸构筑的过渡金属配位聚合物: 合成、 晶体结构、 荧光传感与光催化[J]. 高等学校化学学报, 2020, 41(2): 253-261. |
[8] | 滕渝,杨绍明,柏朝朋,张剑. 基于多壁碳纳米管增敏材料的辣根过氧化物酶分子印迹电化学传感器的制备及对H2O2的检测[J]. 高等学校化学学报, 2020, 41(1): 78-86. |
[9] | 王星火,汤钧,杨英威. 由聚合物门控的介孔二氧化硅基刺激响应性药物递送系统[J]. 高等学校化学学报, 2020, 41(1): 28-43. |
[10] | 刘凤, 李琴芳, 欧阳昆冰, 阳年发. 以联萘酚为侧基的手性聚合物在不对称环氧反应中的应用[J]. 高等学校化学学报, 2019, 40(8): 1628-1636. |
[11] | 李泽, 王建江, 高海涛, 赵芳. 多孔羰基铁/CoFe2O4/聚苯胺复合材料的制备及吸波机理[J]. 高等学校化学学报, 2019, 40(8): 1784-1792. |
[12] | 于彦存, 王显, 葛君杰, 刘长鹏, 邢巍. 超支化聚合物氮修饰Pd催化剂促进甲酸电催化氧化[J]. 高等学校化学学报, 2019, 40(7): 1433-1438. |
[13] | 吴姗姗, 魏缠玲, 赵丽娟, 田央, 王霞, 龚波林. 新型磁性限进分子印迹复合材料的制备及富集性能[J]. 高等学校化学学报, 2019, 40(6): 1150-1157. |
[14] | 朱钦富, 胡可珍, 李小杰, 陈明清. pH响应性树枝状聚合物-金纳米粒子复合药物载体的制备[J]. 高等学校化学学报, 2019, 40(5): 1065-1070. |
[15] | 郑秋光, 刘海亮, 肖长发. 热致相分离法偏二氯乙烯-氯乙烯共聚物多孔膜的制备及性能[J]. 高等学校化学学报, 2019, 40(4): 841-848. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||