高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (1): 183-190.doi: 10.7503/cjcu20190266
• 高分子化学 • 上一篇
李勃天1,2,*(),邵伟1,肖达1,周雪1,董俊伟1,唐黎明2,*(
)
收稿日期:
2019-05-10
出版日期:
2019-12-04
发布日期:
2019-12-04
通讯作者:
李勃天,唐黎明
E-mail:botian.li@cup.edu.cn;tanglm@tsinghua.edu.cn
基金资助:
LI Botian1,2,*(),SHAO Wei1,XIAO Da1,ZHOU Xue1,DONG Junwei1,TANG Liming2,*(
)
Received:
2019-05-10
Online:
2019-12-04
Published:
2019-12-04
Contact:
Botian LI,Liming TANG
E-mail:botian.li@cup.edu.cn;tanglm@tsinghua.edu.cn
Supported by:
摘要:
以配位聚合物凝胶为模板, 构筑均一的聚吡咯纳米线网络, 聚合后经简单处理除去模板, 得到性能优异的聚吡咯凝胶. 结果表明, 模板法合成的聚吡咯凝胶为由均一纳米线组成的三维网络结构, 具有良好的力学性能、 较大的比表面积及优异的电化学特性, 在0.28 A/g电流密度下, 比电容可达450 F/g, 在2.8 A/g电流密度下充放电1000次, 比电容仍可保持88.6%. 聚吡咯纳米线网络凝胶经葡萄糖氧化酶负载后得到柔性传感电极, 对低浓度(0.2 mmol/L)的葡萄糖具有快速响应性能, 有望用于超级电容器及生物电化学传感器等领域.
中图分类号:
李勃天,邵伟,肖达,周雪,董俊伟,唐黎明. 聚吡咯纳米线凝胶的模板制备及储能与电化学传感性能[J]. 高等学校化学学报, 2020, 41(1): 183-190.
LI Botian,SHAO Wei,XIAO Da,ZHOU Xue,DONG Junwei,TANG Liming. Polypyrrole Nanowire Gels Based on Templating Fabrication and Their Energy Storage and Electrochemical Sensing Properties †[J]. Chemical Journal of Chinese Universities, 2020, 41(1): 183-190.
Fig.2 Storage modulus(G', a, c, e) and loss modulus(G″, b, d, f) of APS-PPy(a, b), FN-PPy(c, d) and Ag-L(e, f) at different frequency(strain=0.1%, A) and at different strain(f=1 Hz, B)
Fig.4 Impedance curve(A), the cyclic voltammogram curves at different scan rates(B), the galvanostatic discharge profiles at various current densities(C) and the summary plot of specific capacitance values vs. current density(D) of APS-PPy gel electrode supercapacitor (B) Scan rate/(mV·s-1): a. 5; b. 10; c. 20; d. 50; e. 100. (C) Current rate/(A·g-1): a. 0.24; b. 0.48; c. 0.96; d. 2.4; e. 4.8. Inset in (D): cycling test showing ca. 72% capacitance retention over 1000 cycles at high current rate of 4.8 A/g.
Fig.5 Impedance curve(A), the cyclic voltammogram curves at different scan rates(B), the galvanostatic discharge profiles at various current densities(C) and the summary plot of specific capacitance values vs. current density(D) of FN-PPy gel electrode supercapacitor (B) Scan rate/(mV·s-1): a. 5; b. 10; c. 20; d. 50; e. 100. (C) Current density/(A·g-1): a. 0.28; b. 0.72; c. 1.44; d. 2.17; e. 2.8. Inset in (D): cycling test showing ca. 89% capacitance retention over 1000 cycles at high current rate of 4.8 A/g.
Fig.6 N1s(A) and Fe2p(B) XPS spectra of FN-PPy gel (A) a. C—N(Fe)—C; b. C—N+—C; c. C—NH—C. (B) a. Fe2p1/23+; b. Fe2p1/22+; c. Fe2p3/23+; d. Fe2p3/22+.
Fig.7 APS-PPy gel network structured electrode for biosensor showing amperometric response to increasing concentration(0.2 mmol/L for each time) of glucose(A) and the corresponding plot of amperometric response vs. glucose concentration(B) Inset of (A) shows a magnification of the seventh additions of glucose.
Fig.8 FN-PPy gel network structured electrode for biosensor showing amperometric response to increasing concentration(0.2 mmol/L for each time) of glucose(A) and the corresponding plot of amperometric response vs. glucose concentration(B) Inset of (A) shows a magnification of the sixth additions of glucose.
[1] |
Zhao Y., Liu B. R ., Pan L. J., Yu G. H., Energy Environ. Sci., 2013,6(10), 2856— 2870
doi: 10.1039/c3ee40997j URL |
[2] |
Shi Y., Peng L. L ., Ding Y., Zhao Y., Yu G. H., Chem. Soc. Rev., 2015,44(19), 6684— 6696
doi: 10.1039/c5cs00362h URL pmid: 26119242 |
[3] |
Trung T. Q ., Lee N. E., Adv. Mater., 2016,28(22), 4338— 4372
doi: 10.1002/adma.201504244 URL pmid: 26840387 |
[4] |
Tapas D., Bhawna V ., Polymer, 2019,168, 61— 69
doi: 10.1016/j.polymer.2019.01.058 URL |
[5] |
Hu X. Y ., Fan L. D., Qin G., Shen Z. S., Chen J., Wang M. X., Yang J., Chen Q., J. Power Sources, 2019,414, 201— 209
doi: 10.1016/j.jpowsour.2019.01.006 URL |
[6] |
Chen J., Du C., Zhang Y., Wei W., Wan L., Xie M. J ., Tian Z. F.,. Polymer, 2019,162, 43— 49
doi: 10.1016/j.polymer.2018.12.030 URL |
[7] |
Pan L. J ., Yu G. H., Zhai D. Y., Lee H. R., Zhao W. T., Liu N., Wang H. L., Tee B. C. K., Shi Y., Cui Y., Bao Z. N., Proc. Natl. Acad. Sci., 2012,109(24), 9287— 9292
doi: 10.1073/pnas.1202636109 URL pmid: 22645374 |
[8] |
Shi Y., Yu G. H ., Chem. Mater., 2016,28(8), 2466— 2477
doi: 10.1007/s00464-014-3498-6 URL pmid: 24619333 |
[9] |
Guo H., He W. N ., Lu Y., Zhang X. T.,. Carbon, 2015,92, 133— 141
doi: 10.1016/j.carbon.2015.03.062 URL |
[10] | Shi Y., Zhang J., Bruck A. M ., Zhang Y. M., Li J., Stach E. A., Takeuhi K. J., Marschilok A. C. Adv. Mater., 2017,29(22), 1603922— 1603929 |
[11] |
Zhang W., Feng P., Chen J., Sun Z. M ., Zhao B. X., Prog. Polym. Sci., 2019,88, 220— 240
doi: 10.1016/j.progpolymsci.2018.09.001 URL |
[12] |
Shi Y., Zhou X. Y ., Zhang J., Bond A. C., Marschilok A. C., Takeuhi K. J., Takeuhi E. S., Yu G. H., Nano. Lett., 2017,17(3), 1906— 1914
doi: 10.1021/acs.nanolett.6b05227 URL pmid: 28191854 |
[13] |
Xiao Y., He L., Che J ., J. Mater. Chem., 2012,22(16), 8076— 8082
doi: 10.1039/c2jm30601h URL |
[14] |
Wang Z. W ., Chen J., Cong Y., Zhang H., Xu T., Nie L., Fu J., Chem. Mater., 2018,30(21), 8062— 8069
doi: 10.1021/acs.chemmater.8b03999 URL |
[15] |
Shi Y., Ma C. B ., Peng L. L., Yu G. H., Adv. Funct. Mater., 2015,25(8), 1219— 1225
doi: 10.1002/adfm.v25.8 URL |
[16] |
Huang H. B ., Yao J. L., Li L., Zhu F., Liu Z. T., Zeng X. P., Yu X. H., Huang Z. L., J. Mater. Sci., 2016,51(18), 8728— 8736
doi: 10.1007/s10853-016-0137-8 URL |
[17] |
Wang K., Zhang X., Li C., Zhang H. T ., Sun X. Z., Xu N. S., Ma Y. W., J. Mater. Chem. A, 2014,2(46), 19726— 19732
doi: 10.1039/C4TA04924A URL |
[18] |
Shi Y., Pan L. J ., Liu B. R., Wang Y. Q., Cui Y., Bao Z. N., Yu G. H., J. Mater. Chem. A, 2014,2(17), 6086— 6091
doi: 10.1039/C4TA00484A URL |
[19] |
Dou P., Liu Z., Cao Z. Z ., Zheng J., Wang C., Xu X. H., J. Mater. Sci., 2016,51(9), 4274— 4282
doi: 10.1007/s10853-016-9727-8 URL |
[20] |
Wang Y. Q ., Shi Y., Pan L. J., Ding Y., Zhao Y., Li Y., Shi Y., Yu G. H., Nano. Lett., 2015,15(11), 7736— 7741
doi: 10.1021/acs.nanolett.5b03891 URL pmid: 26505784 |
[21] |
Tam A. Y. Y ., Yam V. W. W., Chem. Soc. Rev., 2013,42(4), 1540— 1567
doi: 10.1039/c2cs35354g URL pmid: 23296361 |
[22] |
Sutar P., Maji T. K ., Chem. Commun., 2016,52, 8055— 8074
doi: 10.1039/c6cc01955b URL pmid: 27203359 |
[23] | Wu H. Q ., Zheng J., Kjoniksen A. L., Wang W., Zhang Y., Ma J. M., Adv. Mater., 2019,31, DOI: 10.1002/adma.201806204 |
[24] |
Li B. T ., Tang L. M., Qiang L., Chen K.,. Soft Matter, 2011,7(3), 963— 969
doi: 10.1039/c0sm00857e URL |
[25] |
Li B. T ., Xiao D., Deng D. S., Ye H. M., Zhou Q., Tang L. M.,. Soft Matter, 2018,14(43), 8764— 8770
doi: 10.1039/c8sm01755g URL pmid: 30328881 |
[26] |
Li B. T., Zhou X., Liu X. Y., Ye H. M., Zhang Y., Zhou Q., Chem. Asian J., 2019,14(9), 1582— 1589
doi: 10.1002/asia.201900131 URL pmid: 30817068 |
[27] |
Wen X., Tang L. M., Li B. T., Chem. Asian J., 2014,9(10), 2975— 2983
doi: 10.1002/asia.201402575 URL pmid: 25112607 |
[28] |
Lu Y., He W. N ., Cao T., Guo H. T., Zhang Y. Y., Li Q. W., Shao Z. Q., Cui Y. L., Zhang X. T., Sci. Rep., 2014,4, 5792
doi: 10.1038/srep05792 URL pmid: 25052015 |
[29] |
Dhand C., Das M., Datta M., Malhotra B. D ., Biosens. Bioelectron., 2011,26, 2811— 2821
doi: 10.1016/j.bios.2010.10.017 URL pmid: 21112204 |
[1] | 包寒, 罗静, 时连鑫, 徐福建, 王树涛. 采用超疏水微柱阵列模板法制备多糖凝胶微米颗粒[J]. 高等学校化学学报, 2020, 41(7): 1484-1491. |
[2] | 孙孟莹,吕景春,徐红,张琳萍,钟毅,陈支泽,隋晓锋,毛志平. 磷腈-紫精聚合物的合成与电致变色性能[J]. 高等学校化学学报, 2020, 41(6): 1399-1406. |
[3] | 盛卉, 薛斌, 秦猛, 王炜, 曹毅. 可拉伸超韧水凝胶的制备和应用[J]. 高等学校化学学报, 2020, 41(6): 1194-1207. |
[4] | 严昊, 唐萍, 李书宏, 赵天艺, 刘明杰. 仿生各向异性聚(N-异丙基丙烯酰胺)水凝胶智能响应驱动器的研究进展[J]. 高等学校化学学报, 2020, 41(5): 936-946. |
[5] | 付可飞, 连惠婷, 魏晓峰, 孙向英, 刘斌. 环糊精基阻抗型传感器的制备及对L-半胱氨酸的识别[J]. 高等学校化学学报, 2020, 41(4): 706-715. |
[6] | 关芳兰,李昕,张群,龚,林紫钰,陈耀,王乐军. 激光直写微型RGO/MWCNT/CF平面柔性超级电容器的制备及性能[J]. 高等学校化学学报, 2020, 41(2): 300-307. |
[7] | 韩洪晶,葛芹,陈彦广,王海英,赵宏志,王怡真,张亚男,邓冀童,宋华,张梅. Ca1-xPrxFeO3催化热解甘蔗渣木质素制备酚类化合物[J]. 高等学校化学学报, 2020, 41(2): 331-340. |
[8] | 任宸锐, 刘根起, 秦夏彤, 刘晨辉, 范晓东. 聚乙烯醇二维光子晶体水凝胶的制备及乙醇响应行为[J]. 高等学校化学学报, 2019, 40(7): 1520-1526. |
[9] | 李湛, 单晓雯, 杨平平, 高壮壮, 方千荣, 薛铭, 裘式纶. 新型金属有机气凝胶的合成、 表征及气体吸附性能[J]. 高等学校化学学报, 2019, 40(6): 1116-1120. |
[10] | 黄晓林, 谢睆, 曹红, 金宏杰, 李春, 吴廷华. 磁芯负载离子液体凝胶微球的制备、表征及在固定化细胞技术中的应用[J]. 高等学校化学学报, 2019, 40(4): 793-799. |
[11] | 颜世峰, 王卫东, 任婕, 滕畅畅, 尹静波. 聚(L-谷氨酸)水凝胶介导羟基磷灰石的生物矿化[J]. 高等学校化学学报, 2019, 40(4): 815-823. |
[12] | 刘奔, 张行颖, 陈韶云, 胡成龙. 一维有序聚苯胺纳米阵列的制备及电化学储能性能[J]. 高等学校化学学报, 2019, 40(3): 498-507. |
[13] | 梁东磊, 宋秋生, 姚玉田, 刘贲. 上转换荧光响应性复合纳米凝胶的制备及荧光能量传递行为[J]. 高等学校化学学报, 2019, 40(3): 583-591. |
[14] | 张恩爽, 吕通, 刘韬, 黄红岩, 刘圆圆, 郭慧, 李文静, 赵英民, 杨洁颖. 石墨烯掺杂碳气凝胶粉体的制备及电磁干扰性能[J]. 高等学校化学学报, 2019, 40(3): 567-575. |
[15] | 刘韬, 李文静, 张恩爽, 钟锦洋, 张凡, 刘圆圆, 赵英民. 柔性交联型聚酰亚胺气凝胶的制备及性能[J]. 高等学校化学学报, 2019, 40(2): 403-409. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||