高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (1): 183.doi: 10.7503/cjcu20190266
• 高分子化学 • 上一篇
李勃天1,2,*(),邵伟1,肖达1,周雪1,董俊伟1,唐黎明2,*()
收稿日期:
2019-05-10
出版日期:
2020-01-10
发布日期:
2019-12-04
通讯作者:
李勃天,唐黎明
E-mail:botian.li@cup.edu.cn;tanglm@tsinghua.edu.cn
基金资助:
LI Botian1,2,*(),SHAO Wei1,XIAO Da1,ZHOU Xue1,DONG Junwei1,TANG Liming2,*()
Received:
2019-05-10
Online:
2020-01-10
Published:
2019-12-04
Contact:
Botian LI,Liming TANG
E-mail:botian.li@cup.edu.cn;tanglm@tsinghua.edu.cn
Supported by:
摘要:
以配位聚合物凝胶为模板, 构筑均一的聚吡咯纳米线网络, 聚合后经简单处理除去模板, 得到性能优异的聚吡咯凝胶. 结果表明, 模板法合成的聚吡咯凝胶为由均一纳米线组成的三维网络结构, 具有良好的力学性能、 较大的比表面积及优异的电化学特性, 在0.28 A/g电流密度下, 比电容可达450 F/g, 在2.8 A/g电流密度下充放电1000次, 比电容仍可保持88.6%. 聚吡咯纳米线网络凝胶经葡萄糖氧化酶负载后得到柔性传感电极, 对低浓度(0.2 mmol/L)的葡萄糖具有快速响应性能, 有望用于超级电容器及生物电化学传感器等领域.
中图分类号:
TrendMD:
李勃天,邵伟,肖达,周雪,董俊伟,唐黎明. 聚吡咯纳米线凝胶的模板制备及储能与电化学传感性能. 高等学校化学学报, 2020, 41(1): 183.
LI Botian,SHAO Wei,XIAO Da,ZHOU Xue,DONG Junwei,TANG Liming. Polypyrrole Nanowire Gels Based on Templating Fabrication and Their Energy Storage and Electrochemical Sensing Properties †. Chem. J. Chinese Universities, 2020, 41(1): 183.
Fig.2 Storage modulus(G', a, c, e) and loss modulus(G″, b, d, f) of APS-PPy(a, b), FN-PPy(c, d) and Ag-L(e, f) at different frequency(strain=0.1%, A) and at different strain(f=1 Hz, B)
Fig.4 Impedance curve(A), the cyclic voltammogram curves at different scan rates(B), the galvanostatic discharge profiles at various current densities(C) and the summary plot of specific capacitance values vs. current density(D) of APS-PPy gel electrode supercapacitor (B) Scan rate/(mV·s-1): a. 5; b. 10; c. 20; d. 50; e. 100. (C) Current rate/(A·g-1): a. 0.24; b. 0.48; c. 0.96; d. 2.4; e. 4.8. Inset in (D): cycling test showing ca. 72% capacitance retention over 1000 cycles at high current rate of 4.8 A/g.
Fig.5 Impedance curve(A), the cyclic voltammogram curves at different scan rates(B), the galvanostatic discharge profiles at various current densities(C) and the summary plot of specific capacitance values vs. current density(D) of FN-PPy gel electrode supercapacitor (B) Scan rate/(mV·s-1): a. 5; b. 10; c. 20; d. 50; e. 100. (C) Current density/(A·g-1): a. 0.28; b. 0.72; c. 1.44; d. 2.17; e. 2.8. Inset in (D): cycling test showing ca. 89% capacitance retention over 1000 cycles at high current rate of 4.8 A/g.
Fig.6 N1s(A) and Fe2p(B) XPS spectra of FN-PPy gel (A) a. C—N(Fe)—C; b. C—N+—C; c. C—NH—C. (B) a. Fe2p1/23+; b. Fe2p1/22+; c. Fe2p3/23+; d. Fe2p3/22+.
Fig.7 APS-PPy gel network structured electrode for biosensor showing amperometric response to increasing concentration(0.2 mmol/L for each time) of glucose(A) and the corresponding plot of amperometric response vs. glucose concentration(B) Inset of (A) shows a magnification of the seventh additions of glucose.
Fig.8 FN-PPy gel network structured electrode for biosensor showing amperometric response to increasing concentration(0.2 mmol/L for each time) of glucose(A) and the corresponding plot of amperometric response vs. glucose concentration(B) Inset of (A) shows a magnification of the sixth additions of glucose.
[1] |
Zhao Y., Liu B. R ., Pan L. J., Yu G. H., Energy Environ. Sci., 2013,6(10), 2856— 2870
doi: 10.1039/c3ee40997j URL |
[2] |
Shi Y., Peng L. L ., Ding Y., Zhao Y., Yu G. H., Chem. Soc. Rev., 2015,44(19), 6684— 6696
doi: 10.1039/c5cs00362h URL pmid: 26119242 |
[3] |
Trung T. Q ., Lee N. E., Adv. Mater., 2016,28(22), 4338— 4372
doi: 10.1002/adma.201504244 URL pmid: 26840387 |
[4] |
Tapas D., Bhawna V ., Polymer, 2019,168, 61— 69
doi: 10.1016/j.polymer.2019.01.058 URL |
[5] |
Hu X. Y ., Fan L. D., Qin G., Shen Z. S., Chen J., Wang M. X., Yang J., Chen Q., J. Power Sources, 2019,414, 201— 209
doi: 10.1016/j.jpowsour.2019.01.006 URL |
[6] |
Chen J., Du C., Zhang Y., Wei W., Wan L., Xie M. J ., Tian Z. F.,. Polymer, 2019,162, 43— 49
doi: 10.1016/j.polymer.2018.12.030 URL |
[7] |
Pan L. J ., Yu G. H., Zhai D. Y., Lee H. R., Zhao W. T., Liu N., Wang H. L., Tee B. C. K., Shi Y., Cui Y., Bao Z. N., Proc. Natl. Acad. Sci., 2012,109(24), 9287— 9292
doi: 10.1073/pnas.1202636109 URL pmid: 22645374 |
[8] |
Shi Y., Yu G. H ., Chem. Mater., 2016,28(8), 2466— 2477
doi: 10.1007/s00464-014-3498-6 URL pmid: 24619333 |
[9] |
Guo H., He W. N ., Lu Y., Zhang X. T.,. Carbon, 2015,92, 133— 141
doi: 10.1016/j.carbon.2015.03.062 URL |
[10] | Shi Y., Zhang J., Bruck A. M ., Zhang Y. M., Li J., Stach E. A., Takeuhi K. J., Marschilok A. C. Adv. Mater., 2017,29(22), 1603922— 1603929 |
[11] |
Zhang W., Feng P., Chen J., Sun Z. M ., Zhao B. X., Prog. Polym. Sci., 2019,88, 220— 240
doi: 10.1016/j.progpolymsci.2018.09.001 URL |
[12] |
Shi Y., Zhou X. Y ., Zhang J., Bond A. C., Marschilok A. C., Takeuhi K. J., Takeuhi E. S., Yu G. H., Nano. Lett., 2017,17(3), 1906— 1914
doi: 10.1021/acs.nanolett.6b05227 URL pmid: 28191854 |
[13] |
Xiao Y., He L., Che J ., J. Mater. Chem., 2012,22(16), 8076— 8082
doi: 10.1039/c2jm30601h URL |
[14] |
Wang Z. W ., Chen J., Cong Y., Zhang H., Xu T., Nie L., Fu J., Chem. Mater., 2018,30(21), 8062— 8069
doi: 10.1021/acs.chemmater.8b03999 URL |
[15] |
Shi Y., Ma C. B ., Peng L. L., Yu G. H., Adv. Funct. Mater., 2015,25(8), 1219— 1225
doi: 10.1002/adfm.v25.8 URL |
[16] |
Huang H. B ., Yao J. L., Li L., Zhu F., Liu Z. T., Zeng X. P., Yu X. H., Huang Z. L., J. Mater. Sci., 2016,51(18), 8728— 8736
doi: 10.1007/s10853-016-0137-8 URL |
[17] |
Wang K., Zhang X., Li C., Zhang H. T ., Sun X. Z., Xu N. S., Ma Y. W., J. Mater. Chem. A, 2014,2(46), 19726— 19732
doi: 10.1039/C4TA04924A URL |
[18] |
Shi Y., Pan L. J ., Liu B. R., Wang Y. Q., Cui Y., Bao Z. N., Yu G. H., J. Mater. Chem. A, 2014,2(17), 6086— 6091
doi: 10.1039/C4TA00484A URL |
[19] |
Dou P., Liu Z., Cao Z. Z ., Zheng J., Wang C., Xu X. H., J. Mater. Sci., 2016,51(9), 4274— 4282
doi: 10.1007/s10853-016-9727-8 URL |
[20] |
Wang Y. Q ., Shi Y., Pan L. J., Ding Y., Zhao Y., Li Y., Shi Y., Yu G. H., Nano. Lett., 2015,15(11), 7736— 7741
doi: 10.1021/acs.nanolett.5b03891 URL pmid: 26505784 |
[21] |
Tam A. Y. Y ., Yam V. W. W., Chem. Soc. Rev., 2013,42(4), 1540— 1567
doi: 10.1039/c2cs35354g URL pmid: 23296361 |
[22] |
Sutar P., Maji T. K ., Chem. Commun., 2016,52, 8055— 8074
doi: 10.1039/c6cc01955b URL pmid: 27203359 |
[23] | Wu H. Q ., Zheng J., Kjoniksen A. L., Wang W., Zhang Y., Ma J. M., Adv. Mater., 2019,31, DOI: 10.1002/adma.201806204 |
[24] |
Li B. T ., Tang L. M., Qiang L., Chen K.,. Soft Matter, 2011,7(3), 963— 969
doi: 10.1039/c0sm00857e URL |
[25] |
Li B. T ., Xiao D., Deng D. S., Ye H. M., Zhou Q., Tang L. M.,. Soft Matter, 2018,14(43), 8764— 8770
doi: 10.1039/c8sm01755g URL pmid: 30328881 |
[26] |
Li B. T., Zhou X., Liu X. Y., Ye H. M., Zhang Y., Zhou Q., Chem. Asian J., 2019,14(9), 1582— 1589
doi: 10.1002/asia.201900131 URL pmid: 30817068 |
[27] |
Wen X., Tang L. M., Li B. T., Chem. Asian J., 2014,9(10), 2975— 2983
doi: 10.1002/asia.201402575 URL pmid: 25112607 |
[28] |
Lu Y., He W. N ., Cao T., Guo H. T., Zhang Y. Y., Li Q. W., Shao Z. Q., Cui Y. L., Zhang X. T., Sci. Rep., 2014,4, 5792
doi: 10.1038/srep05792 URL pmid: 25052015 |
[29] |
Dhand C., Das M., Datta M., Malhotra B. D ., Biosens. Bioelectron., 2011,26, 2811— 2821
doi: 10.1016/j.bios.2010.10.017 URL pmid: 21112204 |
[1] | 王学斌, 薛源, 茆华女, 项艳鑫, 包春燕. 光/还原双重响应水凝胶微球的制备及在细胞三维(3D)培养中的应用[J]. 高等学校化学学报, 2022, 43(8): 20220116. |
[2] | 李玉龙, 谢发婷, 管燕, 刘嘉丽, 张贵群, 姚超, 杨通, 杨云慧, 胡蓉. 基于银离子与DNA相互作用的比率型电化学传感器用于银离子的检测[J]. 高等学校化学学报, 2022, 43(8): 20220202. |
[3] | 闫嘉森, 韩现英, 党兆涵, 李建刚, 何向明. 石蜡/膨胀石墨/石墨烯复合相变储热材料的制备及性能[J]. 高等学校化学学报, 2022, 43(6): 20220054. |
[4] | 蒋小康, 周琦, 周恒为. Gd2ZnTiO6∶Dy3+, Eu3+单基质白光荧光粉的制备与发光性能[J]. 高等学校化学学报, 2022, 43(6): 20220029. |
[5] | 黄益, 吕玲玲, 潘小鹏, 孙广东, 李永强, 姚菊明, 邵建中. 光交联自支撑丝素蛋白水凝胶的三维快速成型[J]. 高等学校化学学报, 2022, 43(4): 20210841. |
[6] | 周永辉, 李尧, 吴雨轩, 田晶, 徐龙权, 费旭. 一种新型光致发光自愈合水凝胶的合成[J]. 高等学校化学学报, 2022, 43(2): 20210606. |
[7] | 周宁, 唐小华, 曹红, 查飞, 李春, 谢春燕, 徐明平, 孙艺格. 石榴状凝胶微球固定化漆酶的制备、 表征及降解双酚A[J]. 高等学校化学学报, 2022, 43(2): 20210705. |
[8] | 颜舒婷, 姚远, 陶鑫峰, 林绍梁. 含硫正离子聚类肽水凝胶的合成与性能[J]. 高等学校化学学报, 2022, 43(11): 20220381. |
[9] | 高慧玲, 曹珍珍, 顾芳, 王海军. 氢键型水凝胶自修复行为的Monte Carlo模拟[J]. 高等学校化学学报, 2022, 43(11): 20220482. |
[10] | 张洁, 银波, 刘玮欣, 刘兴平, 连文贤, 唐韶坤. 勃姆石纤维增强二氧化硅气凝胶的制备及性能[J]. 高等学校化学学报, 2022, 43(11): 20220483. |
[11] | 侯从聪, 王惠颖, 李婷婷, 张志明, 常春蕊, 安立宝. N-CNTs/NiCo-LDH复合材料的制备及电化学性能[J]. 高等学校化学学报, 2022, 43(10): 20220351. |
[12] | 魏闯宇, 陈艳丽, 姜建壮. 基于乙硫基取代的三层酞菁铕二聚体修饰ITO电极构筑电化学多巴胺和尿酸传感器[J]. 高等学校化学学报, 2022, 43(1): 20210582. |
[13] | 魏雨晨, 武婷婷, 杨磊, 金碧玉, 李宏强, 何孝军. 萘基相互连接的多孔碳纳米囊的制备及超电容性能[J]. 高等学校化学学报, 2021, 42(9): 2852. |
[14] | 李占峰, 刘本学, 刘晓婵, 王新强, 张晶, 于诗摩, 赵新富, 张新恩, 伊希斌. 氧化锆湿凝胶中乙酰丙酮配体的脱除机理及气凝胶复合材料的制备[J]. 高等学校化学学报, 2021, 42(9): 2904. |
[15] | 蔡雅倩, 张家怀, 刘方哲, 李海潮, 石建平, 关爽. Hofmeister效应辅助的蛋白质基水凝胶应变传感器[J]. 高等学校化学学报, 2021, 42(8): 2609. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||