高等学校化学学报 ›› 2017, Vol. 38 ›› Issue (7): 1270.doi: 10.7503/cjcu20160919

• 高分子化学 • 上一篇    下一篇

海藻酸-磷脂微囊复合水凝胶的制备、 表征及毒理学分析

史占萍1,5, 史迈1,5, 张文惠2, 申世刚1, 岳志莲3, 杨慧2,5, 丁良2,5(), 潘学峰2,4,5()   

  1. 1. 河北大学化学与环境科学学院, 保定 071002
    2. 河北大学医学院, 保定 071000
    3. Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong,Wollongong, NSW, 2522, Australia
    4. 北京理工大学生命学院, 北京 100081
    5. 保定市生物医学诊断工程研究中心, 保定 071015
  • 收稿日期:2016-12-21 出版日期:2017-07-10 发布日期:2017-04-11
  • 作者简介:联系人简介: 潘学峰, 男, 博士, 教授, 主要从事生物化学、 分子遗传学和分子诊断等研究. E-mail: xuefengpancam@aliyun.com;丁 良, 女, 博士, 教授, 主要从事药物化学等研究. E-mail: 345823685@qq.com
  • 基金资助:
    河北省医学科学研究重点课题(批准号: 20160051)、 京津冀新药研制协同创新计划项目和保定市莲池区科技局重点项目(批准号: 15J04)资助

Preparation, Characterization and Toxicological Analysis of Alginate-phospholipid Vesicle Composite Hydrogels

SHI Zhanping1,5, SHI Mai1, ZHANG Wenhui2, SHEN Shigang1, YUE Zhilian3, YANG Hui2,5, DING Liang2,5,*(), PAN Xuefeng2,4,5,*()   

  1. 1. School of Chemistry and Environments, Hebei University, Baoding 071002, China
    2. School of Medicine, Hebei University, Baoding 071000, China
    3. Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Innovation Campus,Northfields Avenue, Wollongong, NSW 2522, Australia
    4. School of Life Science, Beijing Institute of Technology, Beijing 100081, China
    5. Baoding Center for Biomedical Diagnostics Engineering, Baoding 071015, China
  • Received:2016-12-21 Online:2017-07-10 Published:2017-04-11
  • Contact: DING Liang,PAN Xuefeng E-mail:345823685@qq.com;xuefengpancam@aliyun.com

摘要:

采用薄膜分散法合成磷脂微囊, 根据胶粒的双电层理论, 通过在微囊中加入氯化锰、 氯化钙和氯化镁电解质溶液, 使微囊处于相对稳定的状态. 研究发现加入氯化锰和氯化钙溶液, 微囊胶体的粒径没有明显的变化, 但加入一定浓度氯化镁溶液, 其粒径明显变大. 为了进一步增加磷脂微囊稳定性, 将氯化锰、 氯化钙、 氯化镁磷脂微囊胶体分别与海藻酸钠(SA)溶液混合. 结果表明, 氯化镁与SA几乎不能形成水凝胶, 氯化钙与SA形成水凝胶能力强于氯化锰. 微囊胶体溶液中的磷脂酰丝氨酸(PS)可以与Ca2+和Mg2+键合形成PS-Ca2+和PS-Mg2+, 但不能与Mn2+键合形成PS-Mn2+. 对氯化钙磷脂微囊与海藻酸钠合成的复合水凝胶的形貌、 溶胀率及细胞毒性进行了表征, 结果表明, 氯化钙与SA形成的水凝胶可以捕获胶体中磷脂微囊, 且形貌规整, 结构稳定, 无细胞毒性.

关键词: 磷脂微囊, 热力学稳定性, 海藻酸钠, 水凝胶, 磷脂酰丝氨酸

Abstract:

Phospholipid vesicles were synthesized by thin-film dispersion. According to the electric double layer theory of micelles, the vesicles were stabilized by electrolyte solutions, including manganese chloride, calcium chloride and magnesium chloride. There are no significant changes in the particle sizes of the vesicles colloid by the additions of manganese chloride and calcium chloride solutions, respectively. However, the particle sizes of the vesicles were significantly bigger by adding a certain amount of magnesium chloride. To further increase the stability of the phospholipid vesicles, alginate-phospholipid vesical composite hydrogels were prepared by dropping sodium alginate(SA) solution into phospholipid vesicle colloids stabilized by manganese chloride, calcium chloride and magnesium chloride, respectively. The results show that magnesium chloride and SA hardly formed hydrogel, and calcium chloride and SA formed hydrogel much easier than manganese chloride did. The phosphatidylserine(PS) in the phospholipid vesicles bound to the Ca2+ and Mg2+ through forming PS-Ca2+, PS-Mg2+, respectively, however PS cannot interact with Mn2+, forming PS-Mn2+. The morphology, swelling ratio and cytotoxicity of the composite hydrogels made of alginate-phospholipid vesicles were characterized. The results show that a novel composite hydrogel could be prepared by calcium-crosslinking SA and the PS in the phospholipid vesicles colloid, forming stable and non-cytotoxic composite hydrogel.

Key words: Phospholipid vesicle, Thermodynamic stability, Sodium alginate, Hydrogel, L-Phosphatidylserine

中图分类号: 

TrendMD: