Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (5): 20240524.doi: 10.7503/cjcu20240524
• Articles:Analytical Chemistry • Previous Articles Next Articles
LUO Kui1, LIN Jiaxi2, LI Jianping1,2()
Received:
2024-11-29
Online:
2025-05-10
Published:
2025-02-14
Contact:
LI Jianping
E-mail:likianping@263.net
Supported by:
CLC Number:
TrendMD:
LUO Kui, LIN Jiaxi, LI Jianping. Development of a Glycosyl-imprinted Sensor and Rapid Detection of PD-L1 Positive Exosomes in Breast Cancer[J]. Chem. J. Chinese Universities, 2025, 46(5): 20240524.
Method | Line range/(particles·mL-1) | LOD/(particles·mL-1) | Ref. |
---|---|---|---|
Electrochemical sensor | 1.0×103—1.0×1010 | 3.34×102 | [ |
Surface plasmon resonance | 1.0×103—1.0×107 | 31.9 | [ |
Chemiluminescence immunosensor | 4.75×103—4.75×108 | 7.76×102 | [ |
Electrochemical biosensor | 1.2×102—1.2×107 | 38 | [ |
Fluorescence aptasensor | 5.0×102—5.0×109 | 13 | [ |
GIP electrochemical sensor | 2.36×102—1.18×107 | 93 | This work |
Table 1 Comparison of the GIP sensor with other reported detection methods
Method | Line range/(particles·mL-1) | LOD/(particles·mL-1) | Ref. |
---|---|---|---|
Electrochemical sensor | 1.0×103—1.0×1010 | 3.34×102 | [ |
Surface plasmon resonance | 1.0×103—1.0×107 | 31.9 | [ |
Chemiluminescence immunosensor | 4.75×103—4.75×108 | 7.76×102 | [ |
Electrochemical biosensor | 1.2×102—1.2×107 | 38 | [ |
Fluorescence aptasensor | 5.0×102—5.0×109 | 13 | [ |
GIP electrochemical sensor | 2.36×102—1.18×107 | 93 | This work |
Sample | Found/(particles·mL-1) | RSD(n=5, %) | Added/(particles·mL-1) | Total found/(particles·mL-1) | RSD(n=5, %) | Recovery(%) |
---|---|---|---|---|---|---|
Health 1 | 3.35×104 | 2.60 | 1.18×104 | 4.25×104 | 4.29 | 93.82 |
Health 2 | 6.71×104 | 3.49 | 2.36×104 | 9.03×104 | 2.88 | 99.56 |
BC 1 | 1.06×106 | 4.23 | 2.36×106 | 3.43×106 | 2.77 | 100.29 |
BC 2 | 5.35×106 | 3.54 | 2.36×106 | 8.12×106 | 4.43 | 105.32 |
Table 2 Analytical performance of the GIP sensor in clinical samples
Sample | Found/(particles·mL-1) | RSD(n=5, %) | Added/(particles·mL-1) | Total found/(particles·mL-1) | RSD(n=5, %) | Recovery(%) |
---|---|---|---|---|---|---|
Health 1 | 3.35×104 | 2.60 | 1.18×104 | 4.25×104 | 4.29 | 93.82 |
Health 2 | 6.71×104 | 3.49 | 2.36×104 | 9.03×104 | 2.88 | 99.56 |
BC 1 | 1.06×106 | 4.23 | 2.36×106 | 3.43×106 | 2.77 | 100.29 |
BC 2 | 5.35×106 | 3.54 | 2.36×106 | 8.12×106 | 4.43 | 105.32 |
1 | Bray F., Laversanne M., Sung H., Ferlay J., Siegel R. L., Soeriomataram I., Jemal A., CA Cancer J. Clin., 2024, 74(3), 229—263 |
2 | Xu Y. Y., Gong M. Y., Wang Y., Yang Y., Liu S., Zeng Q. B., Sci. Data, 2023, 10(1), 334 |
3 | McDonald E. S., Clark A. S., Tchou J., Zhang P., Freedman G. M. J., Nucl. Med., 2016, 57, 9S—16S |
4 | Bevers T. B., Helvie M., Bonaccio E., Calhoun K. E., Daly M. B., Farrar W. B., Garber J. E., Gary R., Greenberg C. C., Greenup R., Hansen N. M., Harris R. E., Heerdt A. S., Helsten T., Hodgkiss L., Hoyt T. L., Huff J. G., Jacobs L., Lehman C. D., Monsees B., Niell B. L., Parker C. C., Pearlman M., Philpotts L., Shepardson L. B., Smith M. L., Stein M., Tumyan L., Williams C., Bergman M. A., Kumar R. J., Natl. Compr. Canc. Netw, 2018, 16(11), 1362—1389 |
5 | Jeong S., Park M. J., Song W., Kim H. S., Clin. Biochem., 2020, 78, 43—57 |
6 | Yu W., Hurley J., Roberts D., Chakrabortty S. K., Enderle D., Noerholm M., Berakefield X. O., Skog J. K., Ann. Oncol., 2021, 32(4), 466—477 |
7 | Jabbari N., Akbariazar E., Feqhhi M., Rahbarghazi R., Rezaie J. J., Cell. Physiol., 2020, 235(10), 6345—6356 |
8 | Xu R., Rai A., Chen M., Suwakulsiri W., Greening D. W., Simpson R. J., Nat. Rev. Clin. Oncol., 2018, 15(10), 617—638 |
9 | Tang M. K. S., Wong A. S., Cancer Lett., 2015, 367(1), 26—33 |
10 | Jenjaroenpun P., Kremenska Y., Nair V. M., Kremenskoy M., Joseph B., Kurochkin I. V., PeerJ, 2013, 1, e201 |
11 | Fan W. J., Han P. H., Feng Q. Y., Sun Y. Y., Ren W., Lawson T., Liu C. H., Anal. Chem., 2022, 94(4), 2172—2179 |
12 | Yu Z. Q., Yang Y., Fang W. M., Hu P., Liu Y. B., Shi J. L., ACS Nano, 2023, 17(12), 11384-11395 |
13 | Li C.W., Lim S. O., Chung E. M., Kim Y. S., Park A. H., Yao J., Cha J. H., Xia W. Y., Chan L. C., Kim T., Chang S. S., Lee H. H., Chou C. K., Liu Y. L., Yeh H. C., Perillo E. P., Dunn A. K., Kuo C. W., Khoo K. H., Hsu J. L., Wu Y., Hsu J. M., Yamaguchi H., Huang T. H., Sahin A. A., Hortobagyi G. N., Yoo S. S., Hung M. C., Cancer Cell, 2018, 33(2), 187—201. e10 |
14 | Benicky J., Sanda M., Brnakova Kennedy Z., Grant O. C., Woods R. J., Zwart A., Goldman R. J., Proteome Res., 2020, 20(1), 485—497 |
15 | Li C. W., Lim S. O., Xia W. Y., Lee H. H., Chan L. C., Kuo C. W., Khoo K. H., Chang S. S., Cha J. H., Kim T., Hsu J. L., Wu Y., Hsu J. M., Yamaguchi H., Ding Q. Q., Wang Y., Yao J., Lee C. C., Wu H. J., Sahin A. A., Yu D. H., Hortobagyi G. N., Hung M. C., Nat. Commun., 2016, 7(1), 12632 |
16 | Zhu L., Sun H. T., Wang S., Huang S. L., Zheng Y., Wang C. Q., Hu B. Y., Qin W., Zou T. T., Fu Y., Shen X. T., Zhu W. W., Geng Y., Lu L., Jia H. L., Qin L. X., Dong Q. Z., J. Hematol. Oncol., 2020, 13, 1—24 |
17 | Zhang M. D., Jin K., Gao L., Zhang Z. K., Li F., Zhou F. F., Zhang L., Small Methods, 2018, 2(9), 1800021 |
18 | Hu J. J., Mao Z. H., Lu Y. K., Chen Q., Xia J. J., Deng H., Chen H. X., Biosens. Bioelectron., 2023, 235, 115379 |
19 | Zhang X. Y., Zhu X. Y., Li Y. F., Hai X., Bi S., Talanta, 2023, 258, 124456 |
20 | Zhou J. Q., Lin Q. Y., Huang Z. P., Xiong H. W., Yang B., Chen H., Kong J. L., Anal. Chem., 2022, 94(15), 5723—5728 |
21 | Diao X. K., Li X. L., Hou S. P., Li H. J., Qi G. H., Jin Y. D., Anal. Chem., 2023, 95(19), 7552—7559 |
22 | Wu L. C., Li X. L., Miao H. H., Xu J. J., Pan G. Q., View, 2022, 3(3), 20200170 |
23 | Mazzotta E., Di Giulio T., Malitesta C., Anal. Bioanal. Chem., 2022, 414(18), 5165—5200 |
24 | Jiang Z. J., Luo K., Zeng H. H., Li J. P., ACS Sens., 2024, 9(3), 1252—1260 |
25 | Li J. P., Ma X. H., Li M. X., Zhang Y., Biosens. Bioelectron., 2018, 99, 438—442 |
26 | Li P. F., Liu Z., Chem. Soc. Rev., 2024, 53, 1870—1891 |
27 | Cao Y., Wang Y., Yu X. M., Jiang X. H., Li G., Zhao J., Biosens. Bioelectron., 2020, 166, 112452 |
28 | Liu H. Z., Zhou Y. Y., Chang W. W., Zhao X. L., Hu X. J., Koh K., Chen H. X., Biosens. Bioelectron., 2024, 262, 116527 |
29 | Wang M. L., Shu J. N., Wang Y. S., Zhang W. C., Zheng K. Y., Zhou S. N., Yang D. L., Cui H., ACS Sens., 2024, 9(6), 3444—3454 |
30 | Wang M. H., Lin Y. X., Wu S., Deng Y., Zhang Y. Y., Yang J., Li G. X., Sens. Actuators, B, 2022, 362, 131813 |
31 | Zhu N. N., Li G. H., Zhou J., Kang K., Ying B. W., Yi Q. Y., Wu Y. J., Mater. Chem., 2021, 9(10), 2483—2493 |
[1] | WU Mengge, CHU Zhanying, MENG Bo, YE Zihong, ZHAI Rui. Effect of Exosome Treatment Temperature on Proteomic Analysis of Exosomes [J]. Chem. J. Chinese Universities, 2025, 46(5): 20250023. |
[2] | NING Jiayu, HAO Pengfei, WANG Feng, YE Jiaquan, CHONG Yu. Functional Polyphenol-Arginine Self-assembled Nanodrug for Radiosensitization in Breast Cancer [J]. Chem. J. Chinese Universities, 2025, 46(1): 20240226. |
[3] | MA Shuang, LYU Mingyang, ZHANG Citong, LIU Yi. Construction of Chemotherapy-Photothermal Therapy-Self-enhanced Starvation Therapy Nanoplatform and Its Application in Breast Cancer Treatment [J]. Chem. J. Chinese Universities, 2025, 46(1): 20240467. |
[4] | ZHENG Delun, ZHANG Ruilong. Construction of an Ultrasensitive AFP Photoelectrochemical Analysis Based on the Efficient Carrier Separation Capability of p-n Heterojunction CuO/TiO2 Complexes [J]. Chem. J. Chinese Universities, 2024, 45(8): 20240183. |
[5] | WEI Chaoxian, LI Nansheng, PANG Yuanhao, ZHANG Yun, JIN Wenying, YUAN Yali. Synthesis of Carbon Nanopolymers Based on Deep Eutectic Strategy for Simultaneous Electrochemical Detection of a Variety of Biological Small Molecules [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240103. |
[6] | CHEN Xiaoping, WANG Xutan, LIU Ning, WANG Qingxiang, NI Jiancong, YANG Weiqiang, LIN Zhenyu. MOFs-based Microfluidic Chips for Real-time Online Determination of Multiple Heavy Metal Ions [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230395. |
[7] | LI Shixuan, MENG Hua, YIN Xuehu, YI Jinfei, MA Lihong, ZHANG Yanli, WANG Hongbin, YANG Wenrong, PANG Pengfei. A Double-Chamber Enzymatic Biofuel Cells-based Self-powered Glucose Biosensor Based on Graphene/Gold Nanoparticles/Titanium Carbide Nanocomposite [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240301. |
[8] | LI Jiahui, ZHANG Jian, YAN Long, FENG Yun, ZHANG Jiali, LIU Yongxin, YANG Shaoming. Preparation and Detection Performance of Norfloxacin Imprinted Electrochemical Sensor [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240322. |
[9] | CAO Yiqing, HOU Jingxin, LIU Jianye, LI Yan. Advances and Challenges of Exosome Metabolomics in Body Fluids [J]. Chem. J. Chinese Universities, 2024, 45(11): 20240324. |
[10] | JIN Ying, ZHANG Junjie, ZHANG Yixin, YUAN Yue, HAN Zhenzhen. Research Progress in Exosome Isolation and Proteomics Analysis [J]. Chem. J. Chinese Universities, 2024, 45(11): 20240305. |
[11] | LI Yulong, XIE Fating, GUAN Yan, LIU Jiali, ZHANG Guiqun, YAO Chao, YANG Tong, YANG Yunhui, HU Rong. A Ratiometric Electrochemical Sensor Based on Silver Ion Interaction with DNA for the Detection of Silver Ion [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220202. |
[12] | WEI Chuangyu, CHEN Yanli, JIANG Jianzhuang. Fabrication of Electrochemical Sensor for Dopamine and Uric Acid Based on a Novel Dimeric Phthalocyanine-involved Quintuple-decker Modified Indium Tin Oxide Electrode [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210582. |
[13] | HUANG Ling, ZHUANG Zijian, LI Xiang, SHI Muling, LIU Gaoqiang. Advances in Molecular Recognition of Exosomes Based on Aptamers [J]. Chem. J. Chinese Universities, 2021, 42(11): 3493. |
[14] | FU Kefei, LIAN Huiting, WEI Xiaofeng, SUN Xiangying, LIU Bin. Construction of Cyclodextrin-based Impedance Sensor for Recognition of L-Cysteine † [J]. Chem. J. Chinese Universities, 2020, 41(4): 706. |
[15] | ZHANG Yimeng, ZHANG Huixin, LIU Yang. Recent Advances of Exosomes Bioanalysis and Their Clinic Applications [J]. Chem. J. Chinese Universities, 2020, 41(11): 2306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||