Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (11): 3493.doi: 10.7503/cjcu20210458
• Review • Previous Articles Next Articles
HUANG Ling, ZHUANG Zijian, LI Xiang, SHI Muling(), LIU Gaoqiang()
Received:
2021-07-01
Online:
2021-11-10
Published:
2021-08-18
Contact:
SHI Muling,LIU Gaoqiang
E-mail:mulingshi@hnu.edu.cn;gaoliuedu@csuft.edu.cn
Supported by:
CLC Number:
TrendMD:
HUANG Ling, ZHUANG Zijian, LI Xiang, SHI Muling, LIU Gaoqiang. Advances in Molecular Recognition of Exosomes Based on Aptamers[J]. Chem. J. Chinese Universities, 2021, 42(11): 3493.
Aptamer | Target | Source | Sequence (5'?3') | Reference | |
---|---|---|---|---|---|
AptCD63 | CD63 | Human urine | CACCCCACCTCGCTCCCGTGACACTAATGCTA | [ | |
A549 | Lung cancer | [ | |||
CEM | Leukemia tumor | [ | |||
LNCaP | Prostate cancer | [ | |||
MCF?7 | Breast cancer | [ | |||
Ramos | Human acute Lymphoblastic leukemia | [ | |||
HeLa | Cervical cancer | ||||
HepG2 | Liver cancer | [ | |||
[ | |||||
CACCCCACCT | [ | ||||
TCTAATAACTTACCTCT | [ | ||||
CD63?1 | CD63 | MDA?MB?231 | Breast cancer | TAACACGACAGACGTTCGGAGGTCGAACCCTGACAGCGTGGGC | [ |
AptCD109 | CD109 | 5?8F | Nasopharyngeal carcinoma | ATCCAGAGTGACGCAGCATCTGAGAATAGTGGTTTGCTGT?ATGGTGGGCGTTG AAAGAGGGGTGGACACGGTGGCTTAGT | [ |
SUNE2 | Nasopharyngeal carcinoma | [ | |||
AptCEA | CEA | T84 | Colorectal cancer | TCGCGCGAGTCGTCTGGGGAACCATCGAGTTACACCGAC?CTTCTATGTGCGGCCCCCCGCATCGTCCTCCC | [ |
BT474 | Breast cancer | ATACCAGCTTATTCAATT | [ | ||
MDA?MB?231 | |||||
SK?BR?3 | |||||
MCF?7 | [ | ||||
HepG2 | Liver cancer | ||||
SGC7901 | Gastric cancer | ||||
AptEpCAM | EpCAM | LNCaP | Prostate cancer | CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGG?GTTGGCCTG | [ |
MCF?7 | Breast cancer | [ | |||
MDA?MB?231 | Breast cancer | [ | |||
SW480 | Colorectal cancer | [ | |||
HeLa | Cervical cancer | [ | |||
MDA?MB?231 | Breast cancer | TCACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGG?GGTTGGCCTG | [ | ||
BT474 | [ | ||||
AptHER2 | HER2 | MDA?MB?231 | Breast cancer | GGGCCGTCGAACACGAGCATGGTGCGTGGACCTAGGATGACCTGAGTACTGTCC | [ |
MCF?7 | [ | ||||
BT474 | |||||
SK?BR?3 | |||||
MCF?7/MDA?MB?231 | Breast cancer | GCAGCGGTGTGGGGGCAGCGGTGTGGGGGCAGCGGTGTGGGG | [ | ||
HepG2 | Liver cancer | ||||
HeLa | Cervical cancer | ||||
Ramos | Acute lymphoblastic leukemia | ||||
AptMUC1 | MUC1 | SGC7901 | Gastric cancer | TACTGCATGCACACCACTTCAACTA | [ |
MCF?7 | Breast cancer | TTGATCCTTTGGATACC/GCAGTTGATCCTTTGGATACCCTGG | [44,54―57] | ||
BT474 | GCAGTTGATCCTTTGGATACCCTGG | [ | |||
MDA?MB?231 | |||||
SK?BR?3 | [ | ||||
HepG2 | Liver cancer | [ | |||
Aptamer | Target | Source | Sequence (5'?3') | Reference | |
AptMUC1 | MUC1 | HeLa | Cervical cancer | GCAGTTGATCCTTTGGATACCCTGG | [ |
Ramos | Human acute lymphoblastic leukemia | ||||
AS1411 | Nucleolin | SUNE2 | Nasopharyngeal carcinoma | AGTCTAGGATTCGGCGTGGGTTAATTTTTTTTTGGTGGTGGTGGTTGTGGTGGTGGTGG | [ |
HL?60 cell | Leukemia | GGTGGTGGTGGTTGTGGTGGTGGTGG | [ | ||
AptPSMA | PSMA | LNCaP | Prostate cancer | GCGTTTTCGCTTTTGCGTTTTGGGTCATCTGCTTACGATAGCAATGCT | [ |
HepG2 | Liver cancer | [ | |||
MCF?7 | Breast cancer | ||||
HeLa | Cervical cancer | ||||
LNCaP | Prostate cancer | GGGAGGACGAUGCGGAUCAGCCAUGUUUACGUCACUCCU/CATCCATGGGAATTCGTCGACCCTGCAGGCATGCAAGCTT?TCCCTATAGTGAGTCGTATTACTGCCTAGGCTCGAGCTCG | [ | ||
MDA?MB?231 | Breast cancer | CATCCATGGGAATTCGTCGACCCTGCAGGCATGCAAGCTT?TCCCTATAGTGAGTCGTATTACTGCCTAGGCTCGAGCTCG | [ | ||
Sgc8c | PTK7 | CEM | Humanacute lymphoblastic leukemia | ATCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGA | [15,61―63] |
Serum of lymphoma patient serum | [ | ||||
AptCA125 | CA125 | Serum of ovarian cancer | TATCAATTACTTACCCTAGTGGTGTGATGTCGTATGGATG | ||
AptPSA | PSA | Serum of prostate cancer | AATTAAAGCTCGCCATCAAATAGC | ||
AptAFP | AFP | HepG2 | Liver cancer | AACAAGCTTGGCGGCGGGAAGGTGTTTAAATTCCCGGGT?CTGCGTGGTCTGTGGTGCTG | [ |
GGCAGGAAGACAAACAAGCTTGGCGGCGGGAAGGTGTTT?AAATTCCCGGGTCTGCGTGGTCTGTGGTGCTGT | [ | ||||
AptPDGF | PDGF | MCF?7 | Breast cancer | CAGGCTACGGCACGTAGAGCATCACCATGATCCTG | [ |
HepG2 | Liver cancer | ||||
SGC7901 | Gastric cancer | ||||
AptEGFR | EGFR | SUNE2 | Nasopharyngeal carcinoma | TACCAGTGCGATGCTCAGTGCCGTTTCTTCTCTTTCGCTTT?TTTTGCTTTTGAGCATGCTGACGCATTCGGTTGA | [ |
MDA?MB?231 | Breast cancer | GCCTTAGUAACGTGCTTTGATGTCGATTCGACAGGAGGC | [ | ||
AptPD?L1 | PD?L1 | SUNE2 | Nasopharyngeal carcinoma | AGTCTAGGATTCGGCGTGGGTTAATTTTTTTTTACGCTCGG?ATGCCACTACAGACGGGCC | [ |
ACATCAACTCATTGATAGACAATGCGTCCACTGCCCGTCTCATGGACGTGCTGGTGAC | |||||
AptLZH8 | ― | Liver cancer | ATCCAGAGTGACGCAGCATATTAGTACGGCTTAACCCPCA?TGGTGGACACGGTGGCTTAGT(P: Artificial nucleotide) | [ | |
RNA aptamer | Exosomes | Primary epithelialbreast cancer & normal breast hyperplasia | UGUGGCAGUUAAGAAUAGAUCUUCGCUGCGAUU | [ |
Aptamer | Target | Source | Sequence (5'?3') | Reference | |
---|---|---|---|---|---|
AptCD63 | CD63 | Human urine | CACCCCACCTCGCTCCCGTGACACTAATGCTA | [ | |
A549 | Lung cancer | [ | |||
CEM | Leukemia tumor | [ | |||
LNCaP | Prostate cancer | [ | |||
MCF?7 | Breast cancer | [ | |||
Ramos | Human acute Lymphoblastic leukemia | [ | |||
HeLa | Cervical cancer | ||||
HepG2 | Liver cancer | [ | |||
[ | |||||
CACCCCACCT | [ | ||||
TCTAATAACTTACCTCT | [ | ||||
CD63?1 | CD63 | MDA?MB?231 | Breast cancer | TAACACGACAGACGTTCGGAGGTCGAACCCTGACAGCGTGGGC | [ |
AptCD109 | CD109 | 5?8F | Nasopharyngeal carcinoma | ATCCAGAGTGACGCAGCATCTGAGAATAGTGGTTTGCTGT?ATGGTGGGCGTTG AAAGAGGGGTGGACACGGTGGCTTAGT | [ |
SUNE2 | Nasopharyngeal carcinoma | [ | |||
AptCEA | CEA | T84 | Colorectal cancer | TCGCGCGAGTCGTCTGGGGAACCATCGAGTTACACCGAC?CTTCTATGTGCGGCCCCCCGCATCGTCCTCCC | [ |
BT474 | Breast cancer | ATACCAGCTTATTCAATT | [ | ||
MDA?MB?231 | |||||
SK?BR?3 | |||||
MCF?7 | [ | ||||
HepG2 | Liver cancer | ||||
SGC7901 | Gastric cancer | ||||
AptEpCAM | EpCAM | LNCaP | Prostate cancer | CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGG?GTTGGCCTG | [ |
MCF?7 | Breast cancer | [ | |||
MDA?MB?231 | Breast cancer | [ | |||
SW480 | Colorectal cancer | [ | |||
HeLa | Cervical cancer | [ | |||
MDA?MB?231 | Breast cancer | TCACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGG?GGTTGGCCTG | [ | ||
BT474 | [ | ||||
AptHER2 | HER2 | MDA?MB?231 | Breast cancer | GGGCCGTCGAACACGAGCATGGTGCGTGGACCTAGGATGACCTGAGTACTGTCC | [ |
MCF?7 | [ | ||||
BT474 | |||||
SK?BR?3 | |||||
MCF?7/MDA?MB?231 | Breast cancer | GCAGCGGTGTGGGGGCAGCGGTGTGGGGGCAGCGGTGTGGGG | [ | ||
HepG2 | Liver cancer | ||||
HeLa | Cervical cancer | ||||
Ramos | Acute lymphoblastic leukemia | ||||
AptMUC1 | MUC1 | SGC7901 | Gastric cancer | TACTGCATGCACACCACTTCAACTA | [ |
MCF?7 | Breast cancer | TTGATCCTTTGGATACC/GCAGTTGATCCTTTGGATACCCTGG | [44,54―57] | ||
BT474 | GCAGTTGATCCTTTGGATACCCTGG | [ | |||
MDA?MB?231 | |||||
SK?BR?3 | [ | ||||
HepG2 | Liver cancer | [ | |||
Aptamer | Target | Source | Sequence (5'?3') | Reference | |
AptMUC1 | MUC1 | HeLa | Cervical cancer | GCAGTTGATCCTTTGGATACCCTGG | [ |
Ramos | Human acute lymphoblastic leukemia | ||||
AS1411 | Nucleolin | SUNE2 | Nasopharyngeal carcinoma | AGTCTAGGATTCGGCGTGGGTTAATTTTTTTTTGGTGGTGGTGGTTGTGGTGGTGGTGG | [ |
HL?60 cell | Leukemia | GGTGGTGGTGGTTGTGGTGGTGGTGG | [ | ||
AptPSMA | PSMA | LNCaP | Prostate cancer | GCGTTTTCGCTTTTGCGTTTTGGGTCATCTGCTTACGATAGCAATGCT | [ |
HepG2 | Liver cancer | [ | |||
MCF?7 | Breast cancer | ||||
HeLa | Cervical cancer | ||||
LNCaP | Prostate cancer | GGGAGGACGAUGCGGAUCAGCCAUGUUUACGUCACUCCU/CATCCATGGGAATTCGTCGACCCTGCAGGCATGCAAGCTT?TCCCTATAGTGAGTCGTATTACTGCCTAGGCTCGAGCTCG | [ | ||
MDA?MB?231 | Breast cancer | CATCCATGGGAATTCGTCGACCCTGCAGGCATGCAAGCTT?TCCCTATAGTGAGTCGTATTACTGCCTAGGCTCGAGCTCG | [ | ||
Sgc8c | PTK7 | CEM | Humanacute lymphoblastic leukemia | ATCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGA | [15,61―63] |
Serum of lymphoma patient serum | [ | ||||
AptCA125 | CA125 | Serum of ovarian cancer | TATCAATTACTTACCCTAGTGGTGTGATGTCGTATGGATG | ||
AptPSA | PSA | Serum of prostate cancer | AATTAAAGCTCGCCATCAAATAGC | ||
AptAFP | AFP | HepG2 | Liver cancer | AACAAGCTTGGCGGCGGGAAGGTGTTTAAATTCCCGGGT?CTGCGTGGTCTGTGGTGCTG | [ |
GGCAGGAAGACAAACAAGCTTGGCGGCGGGAAGGTGTTT?AAATTCCCGGGTCTGCGTGGTCTGTGGTGCTGT | [ | ||||
AptPDGF | PDGF | MCF?7 | Breast cancer | CAGGCTACGGCACGTAGAGCATCACCATGATCCTG | [ |
HepG2 | Liver cancer | ||||
SGC7901 | Gastric cancer | ||||
AptEGFR | EGFR | SUNE2 | Nasopharyngeal carcinoma | TACCAGTGCGATGCTCAGTGCCGTTTCTTCTCTTTCGCTTT?TTTTGCTTTTGAGCATGCTGACGCATTCGGTTGA | [ |
MDA?MB?231 | Breast cancer | GCCTTAGUAACGTGCTTTGATGTCGATTCGACAGGAGGC | [ | ||
AptPD?L1 | PD?L1 | SUNE2 | Nasopharyngeal carcinoma | AGTCTAGGATTCGGCGTGGGTTAATTTTTTTTTACGCTCGG?ATGCCACTACAGACGGGCC | [ |
ACATCAACTCATTGATAGACAATGCGTCCACTGCCCGTCTCATGGACGTGCTGGTGAC | |||||
AptLZH8 | ― | Liver cancer | ATCCAGAGTGACGCAGCATATTAGTACGGCTTAACCCPCA?TGGTGGACACGGTGGCTTAGT(P: Artificial nucleotide) | [ | |
RNA aptamer | Exosomes | Primary epithelialbreast cancer & normal breast hyperplasia | UGUGGCAGUUAAGAAUAGAUCUUCGCUGCGAUU | [ |
1 | EL Andaloussi S., Mager I., Breakefield X. O., Wood M. J., Nat. Rev. Drug Discov., 2013, 12(5), 347―357 |
2 | Thery C., Zitvogel L., Amigorena S., Nat. Rev. Immunol., 2002, 2(8), 569―579 |
3 | Jeppesen D. K., Fenix A. M., Franklin J. L., Higginbotham J. N., Zhang Q., Zimmerman L. J., Liebler D. C., Ping J., Liu Q., Evans R., Fissell W. H., Patton J. G., Rome L. H., Burnette D. T., Coffey R. J., Cell, 2019, 177(2), 428―445 |
4 | Li H. L., Xing S., Xu J. H., He Y., Lai Y. Z., Wang Y., Zhang G., Guo S. H., Deng M., Zeng M. S., Liu W. L., Talanta, 2021, 221, 121670 |
5 | Karttunen J., Stewart S. E., Kalmar L., Grant A. J., Frankl F. E. K., Williams T. L., Int. J. Mol. Sci., 2021, 22(9), 4881 |
6 | Xu Y., Leng K. M., Yao Y., Kang P. C., Liao G. Q., Han Y., Shi G. J., Ji D. L., Huang P., Zheng W. Y., Li Z. L., Li J. L., Huang L. N., Yu L., Zhou Y. X., Jiang X. M., Wang H., Li C. L., Su Z. L., Tai S., Zhong X. Y., Wang Z. D., Cui Y. F., Hepatology, 2021, 73(4), 1419―1435 |
7 | Mathivanan S., Simpson R. J., Proteomics, 2009, 9(21), 4997―5000 |
8 | Zhu N. H., Li G. H., Zhou J., Zhang Y. J., Kang K., Ying B. W., Yi Q. Y., Wu Y., J. Mater. Chem. B, 2021, 9(10), 2483―2493 |
9 | Kugeratski F. G., Hodge K., Lilla S., McAndrews K. M., Zhou X. N., Hwang R. F., Zanivan S., Kalluri R., Nat. Cell Biol., 2021, 23(6), 631―641 |
10 | Zhang N., Sun N., Deng C., Talanta, 2021, 221, 121571 |
11 | Hoshino A., Costa⁃Silva B., Shen T. L., Rodrigues G., Hashimoto A., Mark M. T., Molina H., Kohsaka S., Di Giannatale A., Ceder S., Singh S., Williams C., Soplop N., Uryu K., Pharmer L., King T., Bojmar L., Davies A. E., Ararso Y., Zhang T., Zhang H., Hernandez J., Weiss J. M., Dumont⁃Cole V. D., Kramer K., Wexler L. H., Narendran A., Schwartz G. K., Healey J. H., Sandstrom P., Labori K. J., Kure E. H., Grandgenett P. M., Hollingsworth M. A., de Sousa M., Kaur S., Jain M., Mallya K., Batra S. K., Jarnagin W. R., Brady M. S., Fodstad O., Muller V., Pantel K., Minn A. J., Bissell M. J., Garcia B. A., Kang Y., Rajasekhar V. K., Ghajar C. M., Matei I., Peinado H., Bromberg J., Lyden D., Nature, 2015, 527(7578), 329―335 |
12 | Zhang Z. B., Yu X. H., Zhou Z., Li B., Peng J. W., Wu X., Luo X. J., Yang L. F., Cancer Med., 2019, 8(13), 6082―6094 |
13 | van Niel G., D’Angelo G., Raposo G., Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213―228 |
14 | Melo S. A., Luecke L. B., Kahlert C., Fernandez A. F., Gammon S. T., Kaye J., LeBleu V. S., Mittendorf E. A., Weitz J., Rahbari N., Reissfelder C., Pilarsky C., Fraga M. F., Piwnica⁃Worms D., Kalluri R., Nature, 2015, 523(7559), 177―182 |
15 | Hou M., He D. G., Bu H. C., Wang H. Z., Huang J., Gu J. Q., Wu R., Li H. W., He X. X., Wang K. M., Analyst, 2020, 145(19), 6232―6236 |
16 | Zhao X. X., Luo C. J., Mei Q., Zhang H. M., Zhang W. Q., Su D. W., Fu W. L., Luo Y., Anal. Chem., 2020, 92(7), 5411―5418 |
17 | Tovar⁃Camargo O. A., Toden S., Goel A., Expert Rev. Mol. Diagn., 2016, 16(5), 553―567 |
18 | Jin D., Yang F., Zhang Y. L., Liu L., Zhou Y. J., Wang F. B., Zhang G. J., Anal. Chem., 2018, 90(24), 14402―14411 |
19 | Wang L., Pan Y. H., Liu Y. F., Sun Z. W., Huang Y., Li J. L., Yang J., Xiang Y., Li G. X., ACS Appl. Mater. Interfaces, 2020, 12(1), 322―329 |
20 | Record M., Carayon K., Poirot M., Silvente⁃Poirot S., Biochim. Biophys. Acta, 2014, 1841(1), 108―120 |
21 | Nishida⁃Aoki N., Izumi Y., Takeda H., Takahashi M., Ochiya T., Bamba T., Metabolites, 2020, 10(2), 67 |
22 | Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J. J., Lotvall J. O., Nat. Cell Biol., 2007, 9(6), 654―659 |
23 | Hunter M. P., Ismail N., Zhang X., Aguda B. D., Lee E. J., Yu L., Xiao T., Schafer J., Lee M. L., Schmittgen T. D., Nana⁃Sinkam S. P., Jarjoura D., Marsh C. B., PLoS One, 2008, 3(11), e3694 |
24 | Pasini L., Notarangelo M., Vagheggini A., Burgio M. A., Crino L., Chiadini E., Prochowski A. I., Delmonte A., Ulivi P., D’Agostino V. G., Mol. Oncol., 2021, 15(9), 2423―2438 |
25 | Walravens A. S., Smolgovsky S., Li L., Kelly L., Antes T., Peck K., Quon T., Ibrahim A., Marban E., Berman B., Marban L., R⁃Borlado L., de Couto G., Sci. Rep., 2021, 11(1), 8666 |
26 | Zhou D. P., Gu J., Wang Y. P., Wu H. G., Cheng W., Wang Q. P., Zheng G. P., Wang X. D., Cell Biosci., 2021, 11(1), 68 |
27 | Jia Y. Y., Wang W. J., Liang L., Yuan Q., Acta Chim. Sin., 2020, 78(11), 1177―1184 |
28 | Ellington A. D., Szostak J. W., Nature, 1990, 346, 818―822 |
29 | Robertson D. L., Joyce G. F., Nature, 1990, 344, 467―468 |
30 | Tuerk C., Gold L., Science, 1990, 249, 505―510 |
31 | Tan W. H., Donovan M. J., Jiang J. H., Chem. Rev., 2013, 113(4), 2842―2862 |
32 | Zhang L., Yang Y., Tan J., Yuan Q., Mater. Chem. Front., 2020, 4(5), 1315―1327 |
33 | Zhang Z., Tang C., Zhao L., Xu L., Zhou W., Dong Z., Yang Y., Xie Q., Fang X., Nanoscale, 2019, 11(20), 10106―10113 |
34 | Yu Y., Zhang W. S., Guo Y., Peng H., Zhu M., Miao D., Su G., Biosens. Bioelectron., 2020, 167, 112482 |
35 | Jiang J., Yu Y., Zhang H., Cai C., Anal. Chim. Acta, 2020, 1130, 1―9 |
36 | Gao M. L., Yin B. C., Ye B. C., Analyst, 2019, 144(20), 5996―6003 |
37 | Gao M. L., He F., Yin B. C., Ye B. C., Analyst, 2019, 144(6), 1995―2002 |
38 | Chen X., Lan J., Liu Y., Li L., Yan L., Xia Y., Wu F., Li C., Li S., Chen J., Biosens. Bioelectron., 2018, 102, 582―588 |
39 | Xu H. Y., Liao C., Zuo P., Liu Z. W., Ye B. C., Anal. Chem., 2018, 90(22), 13451―13458 |
40 | Cao Y., Li L., Han B., Wang Y., Dai Y., Zhao J., Biosens. Bioelectron., 2019, 141, 111397 |
41 | Song Z., Mao J., Barrero R. A., Wang P., Zhang F., Wang T., Molecules, 2020, 25(23), 5585 |
42 | Jia W. T., Ren C. P., Wang L., Zhu B., Jia W., Gao M. H., Zeng F., Zeng L., Xia X. M., Zhang X. B., Fu T., Li S. S., Du C., Jiang X. J., Chen Y. X., Tan W. H., Zhao Z. L., Liu W. D., Oncotarget, 2016, 7(34), 55328―55342 |
43 | Wang Z. L., Zong S. F., Wang Y. J., Li N., Li L., Lu J., Wang Z. Y., Chen B. A., Cui Y. P., Nanoscale, 2018, 10(19), 9053― 9062 |
44 | An Y., Li R., Zhang F., He P., Anal. Chem., 2020, 92(7), 5404―5410 |
45 | Zhang H. X., Wang Z. H., Zhang Q. X., Wang F., Liu Y., Biosens. Bioelectron., 2019, 124, 184―190 |
46 | Kashefi⁃Kheyrabadi L., Kim J., Chakravarty S., Park S., Gwak H., Kim S. I., Mohammadniaei M., Lee M. H., Hyun K. A., Jung H. I., Biosens. Bioelectron., 2020, 169(112622) |
47 | Wang Y. H., Luo D. W., Fang Y., Wu W. H., Wang Y. J., Xia Y. K., Wu F., Li C. Y., Lan J. M., Chen J. H., Sens. Actuators B: Chem., 2019, 298, 126900 |
48 | Liu C., Zhao J., Tian F., Cai L., Zhang W., Feng Q., Chang J., Wan F., Yang Y., Dai B., Cong Y., Ding B., Sun J., Tan W., Nat. Biomed. Eng., 2019, 3(3), 183―193 |
49 | Wang H., Chen H., Huang Z. P., Li T. D., Deng A. M., Kong J. L., Talanta, 2018, 184, 219―226 |
50 | Li B., Liu C. C., Pan W. L., Shen J. L., Guo J. Y., Luo T. T., Feng J. J., Situ B., An T. X., Zhang Y., Zheng L., Biosens. Bioelectron., 2020, 168, 112520 |
51 | Wang L. L., Wang Y. R., Li J., Zeng L. P., Liao Y. J., Mao H. F., Chen W. Q., Zhang J., Yang H. H., Chen J. H., Anal. Chem., 2019, 91(24), 16023―16023 |
52 | Liu C., Zhao J., Tian F., Chang J., Zhang W., Sun J., J. Am. Chem. Soc., 2019, 141(9), 3817―3821 |
53 | Huang R., He L., Li S., Liu H., Jin L., Chen Z., Zhao Y., Li Z., Deng Y., He N., Nanoscale, 2020, 12(4), 2445―2451 |
54 | Zhang J. L., Shi J. J., Liu W., Zhang K. X., Zhao H. J., Zhang H. L., Zhang Z. Z., Sens. Actuators B: Chem., 2018, 276, 552―559 |
55 | Zhou Y., Xu H. Y., Wang H., Ye B. C., Analyst, 2020, 145(1), 107―114 |
56 | Zhang K., Yue Y., Wu S., Liu W., Shi J., Zhang Z., ACS Sens., 2019, 4(5), 1245―1251 |
57 | Wang L., Pan Y., Liu Y., Sun Z., Huang Y., Li J., Yang J., Xiang Y., Li G., ACS Appl. Mater. Interfaces, 2020, 12(1), 322―329 |
58 | Xing S., Lu Z., Huang Q., Li H., Wang Y., Lai Y., He Y., Deng M., Liu W., Theranostics, 2020, 10(22), 10262―10273 |
59 | Jin D., Yang F., Zhang Y., Liu L., Zhou Y., Wang F., Zhang G. J., Anal. Chem., 2018, 90(24), 14402―14411 |
60 | Zhou Y. G., Mohamadi R. M., Poudineh M., Kermanshah L., Ahmed S., Safaei T. S., Stojcic J., Nam R. K., Sargent E. H., Kelley S. O., Small, 2016, 12(6), 727―732 |
61 | Chen J., Meng H. M., An Y., Geng X., Zhao K., Qu L., Li Z., Talanta, 2020, 209, 120510 |
62 | Im H., Shao H. L., Park Y. I., Peterson V. M., Castro C. M., Weissleder R., Lee H., Nat. Biotechnol., 2014, 32(5), 490―495 |
63 | Jiang Y., Shi M. L., Liu Y., Wan S., Cui C., Zhang L. Q., Tan W. H., Angew. Chem. Int. Ed., 2017, 56(39), 11916―11920 |
64 | Ning C. F., Wang L. Y., Tian Y. F., Yin B. C., Ye B. C., Analyst, 2020, 145(7), 2795―2804 |
65 | Esposito C. L., Quintavalle C., Ingenito F., Rotoli D., Roscigno G., Nuzzo S., Thomas R., Catuogno S., de Franciscis V., Condorelli G., Mol. Ther. Nucleic. Acids, 2021, 23, 982―994 |
66 | Zhou Q., Rahimian A., Son K., Shin D. S., Patel T., Revzin A., Methods, 2016, 97, 88―93 |
67 | Yu Q., Zhao Q., Wang S., Zhao S., Zhang S., Yin Y. G., Dong Y. Y., Anal. Biochem., 2020, 594, 113591 |
68 | Zhao X., Luo C., Mei Q., Zhang H., Zhang W., Su D., Fu W., Luo Y., Anal. Chem., 2020, 92(7), 5411―5418 |
69 | Miao P., Tang Y., Chem. Commun.(Camb.), 2020, 56(37), 4982―4985 |
70 | Li B., Pan W., Liu C., Guo J., Shen J., Feng J., Luo T., Situ B., Zhang Y., An T., Xu C., Zheng W., Zheng L., ACS Sens., 2020, 5(7), 2052―2060 |
71 | Li H., Xing S., Xu J., He Y., Lai Y., Wang Y., Zhang G., Guo S., Deng M., Zeng M., Liu W., Talanta, 2021, 221, 121670 |
72 | Wang Q., Zou L., Yang X., Liu X., Nie W., Zheng Y., Cheng Q., Wang K., Biosens. Bioelectron., 2019, 135, 129―136 |
73 | Wang S., Zhang L., Wan S., Cansiz S., Cui C., Liu Y., Cai R., Hong C., Teng I. T., Shi M., Wu Y., Dong Y., Tan W., ACS Nano, 2017, 11(4), 3943―3949 |
74 | Dirks R. M., Pierce N. A., Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15275―15278 |
75 | Wan S., Zhang L. Q., Wang S., Liu Y., Wu C. C., Cui C., Sun H., Shi M. L., Jiang Y., Li L., Qiu L. P., Tan W. H., J. Am. Chem. Soc., 2017, 139(15), 5289―5292 |
76 | Shen W., Guo K., Adkins G. B., Jiang Q., Liu Y., Sedano S., Duan Y., Yan W., Wang S. E., Bergersen K., Worth D., Wilson E. H., Zhong W., Angew. Chem. Int. Ed., 2018, 57(48), 15675―15680 |
77 | Huang R., He L., Xia Y., Xu H., Liu C., Xie H., Wang S., Peng L., Liu Y., Liu Y., He N., Li Z., Small, 2019, 15(19), e1900735 |
78 | Xu L. Z., Chopdat R., Li D. Y., Al―Jamal K. T., Biosens. Bioelectron., 2020, 169, 112576 |
79 | Zhang Y. Z., Wang D. N., Yue S., Lu Y. B., Yang C. G., Fang J., Xu Z. R., ACS Sens., 2019, 4(12), 3210―3218 |
80 | Wu M., Chen Z., Xie Q., Xiao B., Zhou G., Chen G., Bian Z., Biosens. Bioelectron., 2021, 171, 112733 |
81 | Zhang H., Wang Z., Wang F., Zhang Y., Wang H., Liu Y., Anal. Chem., 2020, 92(7), 5546―5553 |
82 | Chang X., Zhang C., Lv C., Sun Y., Zhang M., Zhao Y., Yang L., Han D., Tan W., J. Am. Chem. Soc., 2019, 141(32), 12738―12743 |
83 | Zhang H., Qiao B., Guo Q., Jiang J., Cai C., Shen J., Analyst, 2020, 145(10), 3557―3563 |
84 | Pan B. T., Teng K., Wu C., Adam M., Johnstone R. M., JCB, 1985, 101(3), 942―948 |
85 | Zou J. M., Shi M. L., Liu X. J., Jin C., Xing X. J., Qiu L. P., Tan W. H., Anal. Chem., 2019, 91(3), 2425―2430 |
86 | Yi K. Z., Rong Y., Huang L. X., Tang X., Zhang Q., Wang W., Wu J. Y., Wang F. B., ACS Sens., 2021, 6(4), 1418―1429 |
87 | Esposito C. L., Quintavalle C., Ingenito F., Rotoli D., Roscigno G., Nuzzo S., Thomas R., Catuogno S., de Franciscis V., Condorelli G., Mol. Ther. Nucleic. Acids, 2021, 23, 982―994 |
88 | Shangguan D., Li Y., Tang Z., Cao Z. C., Chen H. W., Mallikaratchy P., Sefah K., Yang C. J., Tan W., Proc. Natl. Acad. Sci. USA, 2006, 103(32), 11838―11843 |
89 | Zhang L. Q., Wang S., Yang Z. Y., Hoshika S., Xie S. T., Li J., Chen X. G., Wan S., Li L., Benner S. A., Tan W. H., Angew. Chem. Int. Ed., 2020, 59(2), 663―668 |
90 | Zhou J. H., Rossi J., Nat. Rev. Drug Discovery, 2017, 16(6), 181―202 |
91 | Xie X. D., Nie H. F., Zhou Y., Lian S., Mei H., Lu Y. S., Dong H. Y., Li F. Q., Li T., Li B. F., Wang J., Lin M., Wang C. H., Shao J. W., Gao Y., Chen J. M., Xie F. W., Jia L., Nat. Commun., 2020, 11(1), 5476 |
[1] | WANG Longjie, FAN Hongchuan, QIN Yu, CAO Qiue, ZHENG Liyan. Research Progress of Metal-organic Frameworks in the Field of Chemical Separation and Analysis [J]. Chem. J. Chinese Universities, 2021, 42(4): 1167. |
[2] | ZHANG Xiaorong, CHEN Lanlan, HU Shanwen. Advances in Bacteria Biosensing Based on Molecular Recognition [J]. Chem. J. Chinese Universities, 2021, 42(11): 3468. |
[3] | JI Cailing, CHENG Xing, TAN Jie, YUAN Quan. Selection of Functionalized Aptamers and Their Applications in Molecular Recognition [J]. Chem. J. Chinese Universities, 2021, 42(11): 3457. |
[4] | XIE Chen, CHEN Na, YANG Yanbing, YUAN Quan. Recent Progress of Aptamer Functionalized Two-dimensional Materials Field Effect Transistor Sensors [J]. Chem. J. Chinese Universities, 2021, 42(11): 3406. |
[5] | ZHAO Zhuo, WANG Xueqiang. Investigations upon the Bioconjugation-based Construction Technologies and Applications of Aptamer-drug Conjugates [J]. Chem. J. Chinese Universities, 2021, 42(11): 3367. |
[6] | LIU Xuejiao, YANG Fan, LIU Shuang, ZHANG Chunjuan, LIU Qiaoling. Progress in Aptamer-targeted Membrane Protein Recognition and Functional Regulation [J]. Chem. J. Chinese Universities, 2021, 42(11): 3277. |
[7] | LIU Yuan, DENG Jinqi, ZHAO Shuai, TIAN Fei, LI Yi, SUN Jiashu, LIU Chao. Lateral Flow Assay Based on Molecular Recognition for Diagnosis of Corona Virus Disease 2019 Infection [J]. Chem. J. Chinese Universities, 2021, 42(11): 3390. |
[8] | LIU Ke, JIN Yu, LIANG Jiangong, WU Yuan. Research Progress on Improving the Binding Affinity of Aptamers through Chemical Modification [J]. Chem. J. Chinese Universities, 2021, 42(11): 3477. |
[9] | LIN Ningqin, YAO Ke, CHEN Xiangjun. Research Progress of Molecular Recognition and Interaction of Crystallins Linking Cataract [J]. Chem. J. Chinese Universities, 2021, 42(11): 3379. |
[10] | REN Yushuang, GUO Yuanyuan, LIU Xueyi, SONG Jie, ZHANG Chuan. Platinum(Ⅳ) Prodrug-grafted Phosphorothioate DNA and Its Self-assembled Nanostructure for Targeted Drug Delivery [J]. Chem. J. Chinese Universities, 2020, 41(8): 1721. |
[11] | DU Xianchao, HAO Hongxia, QIN Anjun, TANG Benzhong. Detection of Cocaine Based on the System of AIEgen, Aptamer and Exonuclease Ⅰ [J]. Chem. J. Chinese Universities, 2020, 41(3): 411. |
[12] | DONG Qian, LI Zhaoqian, PENG Tianhuan, CHEN Zhuo, TAN Weihong. Progress on Aptamer for Cancer Theranostics [J]. Chem. J. Chinese Universities, 2020, 41(12): 2648. |
[13] | ZHANG Yimeng, ZHANG Huixin, LIU Yang. Recent Advances of Exosomes Bioanalysis and Their Clinic Applications [J]. Chem. J. Chinese Universities, 2020, 41(11): 2306. |
[14] | Zhiqing ZHANG,Shanshan WANG,Zichen ZHANG,Jie MA,Xiufeng WANG,Ting ZHOU,Fang WANG,Guodong ZHANG. Rolling Circle Amplification-based Polyvalent Molecular Beacon Probe for Signal-amplifying and Sensitive-Detection of Thrombin † [J]. Chem. J. Chinese Universities, 2019, 40(12): 2465. |
[15] | WANG Chunyan,JIANG Xiaoqing,ZHOU Bo. An Electrochemical Biosensor Based on Cu-TPA for Determination of Aflatoxin B1 † [J]. Chem. J. Chinese Universities, 2019, 40(11): 2301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||