Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (9): 20220341.doi: 10.7503/cjcu20220341
• Article • Previous Articles Next Articles
CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua()
Received:
2022-05-14
Online:
2022-09-10
Published:
2022-06-24
Contact:
XIANG Zhonghua
E-mail:xiangzh@mail.buct.edu.cn
Supported by:
CLC Number:
TrendMD:
CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua. S-doped Fe-N-C as Catalysts for Highly Reactive Oxygen Reduction Reactions[J]. Chem. J. Chinese Universities, 2022, 43(9): 20220341.
Sample | Atomic percentage(%) | ||||
---|---|---|---|---|---|
Fe2p | S2p | N1s | C1s | O1s | |
Fe3C/Fe?SAS@SNC | 0.63 | 0.75 | 4.05 | 83.52 | 11.05 |
Fe?SAS@SNC | 0.42 | 0.46 | 1.84 | 81.85 | 15.44 |
SNC | — | 0.40 | 2.52 | 82.00 | 15.08 |
Fe@NC | 0.72 | — | 2.98 | 84.84 | 11.46 |
Table 1 Atomic percentage of the samples as measured by XPS
Sample | Atomic percentage(%) | ||||
---|---|---|---|---|---|
Fe2p | S2p | N1s | C1s | O1s | |
Fe3C/Fe?SAS@SNC | 0.63 | 0.75 | 4.05 | 83.52 | 11.05 |
Fe?SAS@SNC | 0.42 | 0.46 | 1.84 | 81.85 | 15.44 |
SNC | — | 0.40 | 2.52 | 82.00 | 15.08 |
Fe@NC | 0.72 | — | 2.98 | 84.84 | 11.46 |
Species percentage(%, atomic fraction) | ||||||
---|---|---|---|---|---|---|
Sample | Total atomic N | Pyridinic N | Graphitic N | Pyrrolic N | Oxidized N | Fe?N |
Fe3C/Fe?SAS@SNC | 4.05 | 1.05 | 1.20 | 0.62 | 0.89 | 0.29 |
Fe?SAS@SNC | 1.84 | 0.44 | 0.34 | 0.46 | 0.41 | 0.19 |
SNC | 2.52 | 0.78 | 0.39 | 0.73 | 0.61 | — |
Fe@NC | 2.98 | 0.70 | 0.66 | 0.63 | 0.59 | 0.40 |
Table 2 XPS atomic percentage of different types of N of the obtained samples
Species percentage(%, atomic fraction) | ||||||
---|---|---|---|---|---|---|
Sample | Total atomic N | Pyridinic N | Graphitic N | Pyrrolic N | Oxidized N | Fe?N |
Fe3C/Fe?SAS@SNC | 4.05 | 1.05 | 1.20 | 0.62 | 0.89 | 0.29 |
Fe?SAS@SNC | 1.84 | 0.44 | 0.34 | 0.46 | 0.41 | 0.19 |
SNC | 2.52 | 0.78 | 0.39 | 0.73 | 0.61 | — |
Fe@NC | 2.98 | 0.70 | 0.66 | 0.63 | 0.59 | 0.40 |
Sample | SBET/(m2·g-1) | Vtotal/(cm3·g-1) | Vmicro/(cm3·g-1) | Vmeso+macro/(cm3·g-1) | Pore size/nm |
---|---|---|---|---|---|
Fe3C/Fe?SAS@SNC | 673 | 0.76 | 0.21 | 0.55 | 12.59 |
Fe?SAS@SNC | 474 | 0.85 | 0.10 | 0.75 | 14.25 |
Table 3 Pore characteristics of Fe3C/Fe-SAS@SNC and Fe-SAS@SNC products
Sample | SBET/(m2·g-1) | Vtotal/(cm3·g-1) | Vmicro/(cm3·g-1) | Vmeso+macro/(cm3·g-1) | Pore size/nm |
---|---|---|---|---|---|
Fe3C/Fe?SAS@SNC | 673 | 0.76 | 0.21 | 0.55 | 12.59 |
Fe?SAS@SNC | 474 | 0.85 | 0.10 | 0.75 | 14.25 |
Catalyst | Onset potential/V | Half?wavepotential/V | Electrolyte | Ref. |
---|---|---|---|---|
Fe?N/P?C?700 | 0.941 | 0.867 | 0.1 mol/L KOH | [ |
S, N?Fe/N/C?CN | — | 0.850 | 0.1 mol/L KOH | [ |
FeNC?S?FexC/Fe | — | 0.887 | 0.1 mol/L KOH | [ |
Fe/N/S?CNTs | 0.987 | 0.880 | 0.1 mol/L KOH | [ |
Fe3N@N?C | 0.995 | 0.849 | 0.1 mol/L KOH | [ |
Fe3C/Fe?SAS@SNC | 1.020 | 0.880 | 0.1 mol/L KOH | This work |
Fe SAs/N?C | 0.950 | 0.750 | 0.1 mol/L HClO4 | [ |
Fe?N/P?C?700 | 0.890 | 0.720 | 0.1 mol/L HClO4 | [ |
Fe/SNC | — | 0.770 | 0.5 mol/L H2SO4 | [ |
Fe?N/CNT?2 | — | 0.770 | 0.5 mol/L H2SO4 | [ |
FeNC?SN?2 | 0.861 | 0.789 | 0.5 mol/L H2SO4 | [ |
Fe3C/Fe?SAS@SNC | 0.892 | 0.785 | 0.5 mol/L H2SO4 | This work |
Table 4 Fe-based electrode materials for ORR
Catalyst | Onset potential/V | Half?wavepotential/V | Electrolyte | Ref. |
---|---|---|---|---|
Fe?N/P?C?700 | 0.941 | 0.867 | 0.1 mol/L KOH | [ |
S, N?Fe/N/C?CN | — | 0.850 | 0.1 mol/L KOH | [ |
FeNC?S?FexC/Fe | — | 0.887 | 0.1 mol/L KOH | [ |
Fe/N/S?CNTs | 0.987 | 0.880 | 0.1 mol/L KOH | [ |
Fe3N@N?C | 0.995 | 0.849 | 0.1 mol/L KOH | [ |
Fe3C/Fe?SAS@SNC | 1.020 | 0.880 | 0.1 mol/L KOH | This work |
Fe SAs/N?C | 0.950 | 0.750 | 0.1 mol/L HClO4 | [ |
Fe?N/P?C?700 | 0.890 | 0.720 | 0.1 mol/L HClO4 | [ |
Fe/SNC | — | 0.770 | 0.5 mol/L H2SO4 | [ |
Fe?N/CNT?2 | — | 0.770 | 0.5 mol/L H2SO4 | [ |
FeNC?SN?2 | 0.861 | 0.789 | 0.5 mol/L H2SO4 | [ |
Fe3C/Fe?SAS@SNC | 0.892 | 0.785 | 0.5 mol/L H2SO4 | This work |
1 | Debe M. K., Nature, 2012, 486(7401), 43—51 |
2 | Yan Q., Wu J., Energ Convers Manage., 2008, 49(8), 2425—2433 |
3 | Al⁃Shahat Eissa A., Kim N. H., Lee J. H., J. Mater. Chem. A, 2020, 8(44), 23436—23454 |
4 | Yang C. C., Zai S. F., Zhou Y. T., Du L., Jiang Q., Adv. Funct. Mater., 2019, 29(27), 1901949 |
5 | Ren G., Lu X., Li Y., Zhu Y., Dai L., Jiang L., ACS Appl. Mater. Inter., 2016, 8(6), 4118—4125 |
6 | Zhao C. X., Li B. Q., Liu J. N., Zhang Q., Angew. Chem. Int. Ed., 2021, 60(9), 4448—4463 |
7 | Guo Y., Liu F., Feng L., Wang X., Zhang X., Liang J., Chem. Eng. J., 2022, 429, 132150 |
8 | Lu J. D., Yang M. C., J. Power Sources, 2011, 196(20), 8519—8524 |
9 | Guha A., Zawodzinski T. A., Schiraldi. D. A. Jr., J. Power Sources, 2010, 195(16), 5167—5175 |
10 | Gong K., Du F., Xia Z., Durstock M., Dai L., Science, 2009, 323(5915), 760—764 |
11 | Liang J., Jiao Y., Jaroniec M., Qiao S. Z., Angew. Chem. Int. Ed., 2012, 51(46), 11496—11500 |
12 | Li Z. X., Yang B. L., Kong L., Yue M. L., Duan H. H., Carbon, 2019, 144, 540—548 |
13 | Wang S., Zhang L., Xia Z., Roy A., Chang D. W., Baek J. B., Dai L., Angew. Chem. Int. Ed., 2012, 51(17), 4209—4212 |
14 | Wang S., Iyyamperumal E., Roy A., Xue Y., Yu D., Dai L., Angew. Chem. Int. Ed., 2011, 50(49), 11756—11760 |
15 | Duan J., Chen S., Jaroniec M., Qiao S. Z., ACS Catal., 2015, 5(9), 5207—5234 |
16 | Guan Z., Zhang X., Chen W., Pei J., Liu D., Xue Y., Zhu W., Zhuang Z., Chem. Commun., 2018, 54(85), 12073—12076 |
17 | Liu P., Cheng Q. Q., Chen C., Zou L. L., Zou Z. Q., Yang H., Chem. J. Chinese Universities, 2018, 39(11), 2492—2499 |
刘培, 程庆庆, 陈驰, 邹亮亮, 邹志青, 杨辉. 高等学校化学学报, 2018, 39(11), 2492—2499 | |
18 | Chen G., Liu P., Liao Z., Sun F., He Y., Zhong H., Zhang T., Zschech E., Chen M., Wu G., Zhang J., Feng X., Adv. Mater., 2020, 32(8), 1907399 |
19 | Zhang N., Zhou T., Chen M., Feng H., Yuan R., Zhong C. A., Yan W., Tian Y., Wu X., Chu W., Wu C., Xie Y., Energ. Environ. Sci., 2020, 13(1), 111—118 |
20 | Sun X., Wei P., Gu S., Zhang J., Jiang Z., Wan J., Chen Z., Huang L., Xu Y., Fang C., Li Q., Han J., Huang Y., Small, 2020, 16(6), 1906057 |
21 | Zheng L., Dong Y., Chi B., Cui Z., Deng Y., Shi X., Du L., Liao S., Small, 2019, 15(4), 1803520 |
22 | Yin Y., Wang J., Li T., Hill J. P., Rowan A., Sugahara Y., Yamauchi Y., ACS Nano, 2021, 13240—13248 |
23 | Wang Y., Wang D., Li Y., Adv. Mater., 2021, 33(34), e2008151 |
24 | Xiao F., Wang Y. C., Wu Z. P., Chen G., Yang F., Zhu S., Siddharth K., Kong Z., Lu A., Li J. C., Zhong C. J., Zhou Z. Y., Shao M., Adv. Mater., 2021, 33(50), e2006292 |
25 | Su S., Huang L., Su S., Meng C., Zhou H., Zhang L., Bian T., Yuan A., ACS Appl. Nano Mater., 2020, 3(11), 11574—11580 |
26 | Li Z., Gao Q., Liang X., Zhang H., Xiao H., Xu P., Liu Z., Carbon, 2019, 150, 93—100 |
27 | Zhai X., Lin W., Liu J., Chen X., Yong J., Yang W., J. Electroanal. Chem., 2020, 866, 114170 |
28 | He Y., Guo H., Hwang S., Yang X., He Z., Braaten J., Karakalos S., Shan W., Wang M., Zhou H., Feng Z., More K. L., Wang G., Su D., Cullen D. A., Fei L., Litster S., Wu G., Adv. Mater., 2020, 32(46), 2003577 |
29 | Yuan K., Luetzenkirchen⁃Hecht D., Li L., Shuai L., Li Y., Cao R., Qiu M., Zhuang X., Leung M. K. H., Chen Y., Scherf U., J. Am. Chem. Soc., 2020, 142(5), 2404—2412 |
30 | Chen P., Zhou T., Xing L., Xu K., Tong Y., Xie H., Zhang L., Yan W., Chu W., Wu C., Xie Y., Angew. Chem. Int. Ed., 2017, 56(2), 610—614 |
31 | Qiao Y., Yuan P., Hu Y., Zhang J., Mu S., Zhou J., Li H., Xia H., He J., Xu Q., Adv. Mater., 2018, 30(46), 1804504 |
32 | Jin H., Zhou H., Li W., Wang Z., Yang J., Xiong Y., He D., Chen L., Mu S., J. Mater. Chem. A, 2018, 6(41), 20093—20099 |
33 | Li T., Li M., Zhang M., Li X., Liu K., Zhang M., Liu X., Sun D., Xu L., Zhang Y., Tang Y., Carbon, 2019, 153, 364—371 |
34 | Wang J., Huang Z., Liu W., Chang C., Tang H., Li Z., Chen W., Jia C., Yao T., Wei S., Wu Y., Lie Y., J. Am. Chem. Soc., 2017, 139(48), 17281—17284 |
35 | Shen H., Gracia⁃Espino E., Ma J., Zang K., Luo J., Wang L., Gao S., Mamat X., Hu G., Wagberg T., Guo S., Angew. Chem. Int. Edit., 2017, 56(44), 13800—13804 |
36 | Xia D., Yang X., Xie L., Wei Y., Jiang W., Dou M., Li X., Li J., Gan L., Kang F., Adv. Funct. Mater., 2019, 29(49), 1906174 |
37 | Shao C., Wu L., Zhang H., Jiang Q., Xu X., Wang Y., Zhuang S., Chu H., Sun L., Ye J., Li B., Wang X., Adv. Funct. Mater., 2021, 31(25), 2100833 |
[1] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[2] | GU Yu, XI Baojuan, LI Jiangxiao, XIONG Shenglin. Structure Regulation of Single-atom Catalysts in Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220036. |
[3] | ZHANG Xiaoyu, XUE Dongping, DU Yu, JIANG Su, WEI Yifan, YAN Wenfu, XIA Huicong, ZHANG Jianan. MOF-derived Carbon-based Electrocatalysts Confinement Catalyst on O2 Reduction and CO2 Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210689. |
[4] | HE Yujing, LI Jiale, WANG Dongyang, WANG Fuling, XIAO Zuoxu, CHEN Yanli. Zinc-based Activated Fe/Co/N Doped Biomass Carbon Electrocatalysts with High Oxygen Reduction Activity [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220475. |
[5] | MA Jun, ZHONG Yang, ZHANG Shanshan, HUANG Yijun, ZHANG Lipeng, LI Yaping, SUN Xiaoming, XIA Zhenhai. Design and Theoretical Calculation of Heteroatoms Doped Graphdiyne Towards Efficiently Catalyzing Oxygen Reduction and Evolution Reactions [J]. Chem. J. Chinese Universities, 2021, 42(2): 624. |
[6] | WANG Yuemin, MENG Qinglei, WANG Xian, GE Junjie, LIU Changpeng, XING Wei. Enhancement of Performance of Fe-N-C Catalysts by Copper and Sulfur Doping for the Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2020, 41(8): 1843. |
[7] | YIN Wenjing, LIU Xiao, QIAN Huidong, ZOU Zhiqing. Preparation and Oxygen Reduction Performance of Fe, N co-Doped arbon Nanoplate with High Density of Active Sites† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1480. |
[8] | XU Zhaoquan, MA Junhong, SHI Minhui, FENG Chao, XIE Yahong, MI Hongyu. Preparation and Application of a Novel Natural Product-based Fe and N Codoped Carbon Catalyst for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1532. |
[9] | WANG Xiuli, HE Xingquan. Electrocatalytic Performance of Fe9S10 Nanoparticles Loaded Nitrogen and Sulphur Codoped Porous Carbon for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1524. |
[10] | HUANG Jipei,LI Yi,YANG Shenhui,ZHOU Yazhou,CHENG Xiaonong,ZHU Jia,YANG Juan. Synthesis of Three-dimensional Pt-Ag Aerogels and Their Electrocatalytic Performance Toward Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(5): 1063. |
[11] | DI Muxin, XIAO Guozheng, HUANG Peng, CAO Yihuan, ZHU Ying. Co/N Co-doped Carbon Nanotube/Graphene Composites as Efficient Electrocatalysts for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(2): 343. |
[12] | LIU Pei, CHENG Qingqing, CHEN Chi, ZOU Liangliang, ZOU Zhiqing, YANG Hui. Preparation and Oxygen Reduction Reaction Catalytic Performance of Fe, N Co-doped Carbon Nanofibers with Encapsulated Iron Nitride† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2492. |
[13] | KANG Huan, LI Shang, LIU Chang, GUO Wei, PAN Mu. Synthesis of Ordered Mesoporous Fe-N-C-PANI Catalyst via Self-assembly and Its Oxygen Reduction Reaction Activity in Acid Medium [J]. Chem. J. Chinese Universities, 2017, 38(8): 1423. |
[14] | LI Weilun, YAO Ying, ZHANG Cunzhong. Applications of Carbon Fiber Ultra-microelectrode and Powder Microelectrode in Exploring Influences of Non-aqueous Solvents and Cathode Materials on ORR and OER† [J]. Chem. J. Chinese Universities, 2017, 38(4): 642. |
[15] | XU Kai,LI Yi,ZHAO Nan,DU Wenxiu,ZENG Weiwei,GAO Shuai,CHENG Xiaonong,YANG Juan. Synthesis of Hollow PtNi/Graphene Cellular Monolith Catalysts and Their Electrochemical Performance† [J]. Chem. J. Chinese Universities, 2016, 37(8): 1476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||