Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (5): 20220036.doi: 10.7503/cjcu20220036
• Review • Previous Articles Next Articles
GU Yu, XI Baojuan, LI Jiangxiao, XIONG Shenglin()
Received:
2022-01-15
Online:
2022-05-10
Published:
2022-03-03
Contact:
XIONG Shenglin
E-mail:chexsl@sdu.edu.cn
Supported by:
CLC Number:
TrendMD:
GU Yu, XI Baojuan, LI Jiangxiao, XIONG Shenglin. Structure Regulation of Single-atom Catalysts in Oxygen Reduction Reactions[J]. Chem. J. Chinese Universities, 2022, 43(5): 20220036.
1 | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I. B., Nørskov J. K., Jaramillo T. F., Science, 2017, 355(6321), eaad4998 |
2 | Wisniak J., Educación Química, 2010, 21(1), 60—69 |
3 | Chen Y. J., Ji S. F., Chen C., Peng Q., Wang D. S., Li Y. D., Joule, 2018, 2(7), 1242—1264 |
4 | Hou C. C., Wang H. F., Li C. X., Xu Q., Energy Environ. Sci., 2020, 13(6), 1658—1693 |
5 | Zhang J. Q., Zhao Y. F., Guo X., Chen C., Dong C. L., Liu R. S., Han C. P., Li Y. D., Gogotsi Y., Wang G. X., Nat. Catal., 2018, 1(12), 985—992 |
6 | Li P. S., Wang M. Y., Duan X. X., Zheng L. R., Cheng X. P., Zhang Y. F., Kuang Y., Li Y. P., Ma Q., Feng Z. X., Liu W., Sun X. M., Nat. Commun., 2019, 10, 1711 |
7 | Zitolo A., Goellner V., Armel V., Sougrati M. T., Mineva T., Stievano L., Fonda E., Jaouen F., Nat. Mater., 2015, 14(9), 937—942 |
8 | Gu J., Hsu C. S., Bai L. C., Chen H. M., Hu X. L., Science, 2019, 364(6445), 1091—1094 |
9 | Gu Y., Xi B. J., Tian W. Z., Zhang H., Fu Q., Xiong S. L., Adv. Mater., 2021, 33(25), 2100429 |
10 | Kulkarni A., Siahrostami S., Patel A., Nørskov J. K., Chem. Rev., 2018, 118(5), 2302—2312 |
11 | Berl E., J. Electrochem. Soc., 1939, 76, 359—369 |
12 | Zheng Z. K., Ng Y. H., Wang D. W., Amal R., Adv. Mater., 2016, 28(45), 9949—9955 |
13 | Siahrostami S., Verdaguer⁃Casadevall A., Karamad M., Deiana D., Malacrida P., Wickman B., Escudero⁃Escribano M., Paoli E. A., Frydendal R., Hansen T. W., Chorkendorff I., Stephens I. E. L., Rossmeisl J., Nat. Mater., 2013, 12(12), 1137—1143 |
14 | Holewinski A., Idrobo J. C., Linic S., Nat. Chem., 2014, 6(9), 828—834 |
15 | Liu M. M., Wang L. L., Zhao K. N., Shi S. S., Shao Q. S., Zhang L., Sun X. L., Zhao Y. F., Zhang J. J., Energy Environ. Sci., 2019, 12(10), 2890—2923 |
16 | Ramaswamy N., Tylus U., Jia Q. Y., Mukerjee S., J. Am. Chem. Soc., 2013, 135(41), 15443—15449 |
17 | Guo X. Y., Lin S. R., Gu J. X., Zhang S. L., Chen Z. F., Huang S. P., ACS Catal., 2019, 9(12), 11042—11054 |
18 | Sun Y. Y., Silvioli L., Sahraie N. R., Ju W., Li J. K., Zitolo A., Li S., Bagger A., Arnarson L., Wang X. L., Moeller T., Bernsmeier D., Rossmeisl J., Jaouen F., Strasser P., J. Am. Chem. Soc., 2019, 141(31), 12372—12381 |
19 | Nilsson A., Pettersson L. G., Norskov J. K., Chemical Bonding at Surfaces and Interfaces, Elsevier, Amsterdam, 2008, 511—520 |
20 | Xu H. X., Cheng D. J., Cao D. P., Zeng X. C., Nat. Catal., 2018, 1(5), 339—348 |
21 | Peng H. L., Liu F. F., Liu X. J., Liao S. J., You C. H., Tian X. L., Nan H. X., Luo F., Song H. Y., Fu Z. Y., Huang P. Y., ACS Catal., 2014, 4(10), 3797—3805 |
22 | Huang H. G., Shen K., Chen F. F., Li Y. W., ACS Catal., 2020, 10(12), 6579—6586 |
23 | Luo E. G., Zhang H., Wang X., Gao L. Q., Gong L. Y., Zhao T., Jin Z., Ge J. J., Jiang Z., Liu C. P., Xing W., Angew. Chem. Int. Ed., 2019, 58(36), 12469—12475 |
24 | Han Y. H., Wang Y. G., Chen W. X., Xu R. R., Zheng L. R., Zhang J., Luo J., Shen R. A., Zhu Y. Q., Cheong W. C., Chen C., Peng Q., Wang D. S., Li Y. D., J. Am. Chem. Soc., 2017, 139(48), 17269—17272 |
25 | Li J. Z., Chen M. J., Cullen D. A., Hwang S., Wang M. Y., Li B. Y., Liu K. X., Karakalos S., Lucero M., Zhang H. G., Lei C., Xu H., Sterbinsky G. E., Feng Z. X., Su D., More K. L., Wang G. F., Wang Z. B., Wu G., Nat. Catal., 2018, 1(12), 935—945 |
26 | Xiao M. L., Zhu J. B., Li G. R., Li N., Li S., Cano Z. P., Ma L., Gui P. X., Xu P., Jiang G. P., Jin H. L., Wang S., Wu T. P., Lu J., Yu A. P., Su D., Chen Z. W., Angew. Chem. Int. Ed., 2019, 58(28), 9640—9645 |
27 | Zhang C. H., Sha J. W., Fei H. L., Liu M. J., Yazdi S., Zhang J. B., Zhong Q. F., Zou X. L., Zhao N. Q., Yu H. S., Jiang Z., Ringe E., Yakobson B. I., Dong J. C., Chen D. L., Tour J. M., ACS Nano, 2017, 11(7), 6930—6941 |
28 | Liu J., Jiao M. G., Lu L. L., Barkholtz H. M., Li Y. P., Wang Y., Jiang L. H., Wu Z. J., Liu D. J., Zhuang L., Ma C., Zeng J., Zhang B. S., Su D. S., Song P., Xing W., Xu W. L., Wang Y., Jiang Z., Sun G. Q., Nat. Commun., 2017, 8, 15938 |
29 | Wang T. Z., Cao X. J., Qin H. Y., Shang L., Zheng S. Y., Fang F., Jiao L. F., Angew. Chem. Int. Ed., 2021, 60(39), 21237—21241 |
30 | Luo F., Roy A., Silvioli L., Cullen D. A., Zitolo A., Sougrati M. T., Oguz I. C., Mineva T., Teschner D., Wagner S., Wen J., Dionigi F., Kramm U. I., Rossmeisl J., Jaouen F., Strasser P., Nat. Mater., 2020, 19(11), 1215—1223 |
31 | Fei H. L., Dong J. C., Wan C. Z., Zhao Z. P., Xu X., Lin Z. Y., Wang Y. L., Liu H. T., Zang K. T., Luo J., Zhao S. L., Hu W., Yan W. S., Imran S., Huang Y., Duan X. F. Adv. Mater., 2018, 30(35), 1802146 |
32 | Sun X. X., Li K., Yin C., Wang Y., Jiao M. G., He F., Bai X. W., Tang H., Wu Z. J., Carbon, 2016, 108, 541—550 |
33 | Xiao M. L., Zhu J. B., Ma L., Jin Z., Ge J. J., Deng X., Hou Y., He Q. G., Li J. K., Jia Q. Y., Mukerjee S., Yang R., Jiang Z., Su D. S., Liu C. P., Xing W., ACS Catal., 2018, 8(4), 2824—2832 |
34 | Han Y. H., Wang Y. G., Chen W. X., Xu R. R., Zheng L. R., Zhang J., Luo J., Shen R. A., Zhu Y. Q., Cheong W. C., Chen C., Peng Q., Wang D. S., Li Y. D., J. Am. Chem. Soc., 2017, 139(48), 17269—17272 |
35 | Yi J. D., Xu R., Wu Q., Zhang T., Zang K. T., Luo J., Liang Y. L., Huang Y. B., Cao R., ACS Energy Lett., 2018, 3(4), 883—889 |
36 | Wang X. X., Cullen D. A., Pan Y. T., Hwang S., Wang M. Y., Feng Z. X., Wang J. Y., Engelhard M. H., Zhang H. G., He Y. H., Shao Y. Y., Su D., More K. L., Spendelow J. S., Wu G., Adv. Mater., 2018, 30(11), 1706758 |
37 | Lai Q. X., Zheng L. R., Liang Y. Y., He J. P., Zhao J. X. Chen J. H., ACS Catal., 2017, 7(3), 1655—1663 |
38 | Zhu Y. S., Zhang B. S., Liu X., Wang D. W., Su D. S., Angew. Chem. Int. Ed., 2014, 53(40), 10673—10677 |
39 | Jia Q. Y., Ramaswamy N., Hafiz H., Tylus U., Strickland K., Wu G., Barbiellini B., Bansil A., Holby E. F., Zelenay P., Mukerjee S., ACS Nano, 2015, 9(12), 12496—12505 |
40 | Kramm U. I., Herranz J., Larouche N., Arruda T. M., Lefèvre M., Jaouen F., Bogdanoff P., Fiechter S., Abs⁃Wurmbach I., Mukerjee S., Dodelet J. P., Phys. Chem. Chem. Phys., 2012, 14(33), 11673—11688 |
41 | Holby E. F., Zelenay P., Nano Energy, 2016, 29, 54—64 |
42 | Kramm U. I., Lefèvre M., Larouche N., Schmeisser D., Dodelet J. P., J. Am. Chem. Soc., 2014, 136(3), 978—985 |
43 | Wang Y., Tang Y. J., Zhou K., J. Am. Chem. Soc., 2019, 141(36), 14115—14119 |
44 | Yang X., Xia D. S., Kang Y. Q., Du H. D., Kang F. Y., Gan L., Li J., Adv. Sci., 2020, 7(12), 2000176 |
45 | Shen H. J., Gracia⁃Espino E., Ma J. Y., Tang H. D., Mamat X., Wagberg T., Hu G. Z., Guo S. J., Nano Energy, 2017, 35, 9—16 |
46 | Yin P. Q., Yao T., Wu Y. E., Zheng L. R., Lin Y., Liu W., Ju H. X., Zhu J. F., Hong X., Deng Z. X., Zhou G., Wei S. Q., Li Y. D., Angew. Chem. Int. Ed., 2016, 55(36), 10800—10805 |
47 | Liu S., Li Z. D., Wang C. L., Tao W. W., Huang M. X., Zuo M., Yang Y., Yang K., Zhang L. J., Chen S., Xu P. P., Chen Q. W., Nat. Commun., 2020, 11(1), 938 |
48 | Yang Z. K., Chen B. X., Chen W. X., Qu Y. T., Zhou F. Y., Zhao C. M., Xu Q., Zhang Q. H., Duan X. Z., Wu Y. E., Nat. Commun., 2019, 10, 3734 |
49 | Liu J., Jiao M. G., Mei B. B., Tong Y. X., Li Y. P., Ruan M. B., Song P., Sun G. Q., Jiang L. H., Wang Y., Jiang Z., Gu L., Zhou Z., Xu W. L., Angew. Chem. Int. Ed., 2019, 58(4), 1163—1167 |
50 | Yuan K., Lützenkirchen-Hecht D., Li L. B., Shuai L., Li Y. Z., Cao R., Qiu M., Zhuang X. D., Leung M. K. H., Chen Y. W., Scherf U., J. Am. Chem. Soc., 2020, 142(5), 2404—2412 |
51 | Guo S. Y., Yuan P. F., Zhang J. N., Jin P. B., Sun H. M., Lei K. X., Pang X. C., Xu Q., Cheng F. Y., Chem. Commun., 2017, 53(71), 9862—9865 |
52 | Shang H. S., Zhou X. Y., Dong J. C., Li A., Zhao X., Liu Q. H., Lin Y., Pei J. J., Li Z., Jiang Z. L., Zhou D. N., Zheng L. R., Wang Y., Zhou J., Yang Z. K., Cao R., Sarangi R., Sun T. T., Yang X., Zheng X. S., Yan W. S., Zhuang Z. B., Li J., Chen W. X., Wang D. S., Zhang J. T., Li Y. D., Nat. Commun., 2020, 11(1), 3049 |
53 | Jiang K., Back S., Akey A. J., Xia C., Hu Y. F., Liang W. T., Schaak D., Stavitski E., Nørskov J. K., Siahrostami S., Wang H. T., Nat. Commun., 2019, 10, 3997 |
54 | Yang Y., Mao K. T., Gao S. Q., Huang H., Xia G. L., Lin Z. Y., Jiang P., Wang C. L., Wang H., Chen Q. W., Adv. Mater., 2018, 30(28), 1801732 |
55 | Guo Y.Y., Yuan P. F., Zhang J. N., Hu Y. F., Amiinu I. S., Wang X., Zhou J. G., Xia H. C., Song Z. B., Xu Q., Mu S. C., ACS Nano, 2018, 12(2), 1894—1901 |
56 | Han Y. H., Wang Y. G., Xu R. R., Chen W. X., Zheng L. R., Han A. J., Zhu Y. Q., Zhang J., Zhang H. B., Luo L., Chen C., Peng Q., Wang D. S., Li Y. D., Energy Environ. Sci., 2018, 11(9), 2348—2352 |
57 | Tang C., Chen L., Li H. J., Li L.Q., Jiao Y., Zheng Y., Xu H. L., Davey K., Qiao S. Z., J. Am. Chem. Soc., 2021, 143(20), 7819—7827 |
58 | Zhang Q. R., Tan X., Bedford N. M., Han Z. J., Thomsen L., Smith S., Amal R., Lu X. Y., Nat. Commun., 2020, 11(1), 4181 |
59 | Jiang R., Li L., Sheng T., Hu G. F., Chen Y. G., Wang L. Y., J. Am. Chem. Soc., 2018, 140(37), 11594—11598 |
60 | Mun Y., Lee S., Kim K., Kim S., Lee S., Han J. W., Lee J., J. Am. Chem. Soc., 2019, 141(15), 6254—6262 |
61 | Chen P. Z., Zhou T. P., Xing L. L., Xu K., Tong Y., Xie H., Zhang L. D., Yan W. S., Chu W. S., Wu C. Z., Xie Y., Angew. Chem. Int. Ed., 2017, 56(2), 610—614 |
62 | Li Q. H., Chen W. X., Xiao H., Gong Y., Li Z., Zheng L. R., Zheng X. S., Yan W. S., Cheong W. C., Shen R. A., Fu N. H., Gu L., Zhuang Z. B., Chen C., Wang D. S., Peng Q., Li J., Li Y. D., Adv. Mater., 2018, 30(25), 1800588 |
63 | Shen H. J., Gracia-Espino E., Ma J. Y., Zang K. T., Luo J., Wang L., Gao S. S., Mamat X., Hu G. Z., Wagberg T., Guo S. J., Angew. Chem. Int. Ed., 2017, 56(44), 13800—13804 |
64 | Zhang L. Z., Fischer J. M. T. A., Jia Y., Yan X. C., Xu W., Wang X. Y., Chen J., Yang D. J., Liu H. W., Zhuang L. Z., Hanke M., Searles D. J., Huang K. K., Feng S. H., Brown C. L., Yao X. D., J. Am. Chem. Soc., 2018, 140(34), 10757—10763 |
65 | Wang J., Liu W., Luo G., Li Z. J., Zhao C., Zhang H. R., Zhu M. Z., Xu Q., Wang X. Q., Zhao C. M., Qu Y. T., Yang Z. K., Yao T., Li Y. F., Lin Y., Wu Y., Li Y. D., Energy Environ. Sci., 2018, 11(12), 3375—3379 |
66 | Tong M. M., Sun F. F., Xie Y., Wang Y., Yang Y. Q., Tian C. G., Wang L., Fu H. G., Angew. Chem. Int. Ed., 2021, 60(25), 14005—14012 |
67 | Xiao M. L., Zhang H., Chen Y. T., Zhu J. B., Gao L. Q., Jin Z., Ge J. J., Jiang Z., Chen S. L., Liu C. P., Xing W., Nano Energy, 2018, 46, 396—403 |
68 | Gong S. P., Wang C. L., Jiang P., Hu L., Lei H., Chen Q. W., J. Mater. Chem. A, 2018, 6(27), 13254—13262 |
69 | Zeng X. J., Shui J. L., Liu X. F., Liu Q. T., Li Y. C., Shang J. X., Zheng L. R., Yu R. H., Adv. Energy Mater., 2018, 8(1), 1701345 |
70 | Wang J., Liu W., Luo G., Li Z. J., Zhao C., Zhang H. R., Zhu M. Z., Xu Q., Wang X. Q., Zhao C. M., Qu Y. T., Yang Z. K., Yao T., Li Y. F., Lin Y., Wu Y., Li Y. D., Energy Environ. Sci., 2018, 11(12), 3375—3379 |
71 | Yang G. G., Zhu J. W., Yuan P. F., Hu Y. F., Qu G., Lu B. A., Xue X. Y., Yin H. B., Cheng W. Z., Cheng J. Q., Xu W. J., Li J., Hu J. S., Mu S. C., Zhang J. N., Nat. Commun., 2021, 12(1), 1734 |
72 | Li Q. K., Li X. F., Zhang G. Z., Jiang J., J. Am. Chem. Soc., 2018, 140(45), 15149—15152 |
73 | Jin Z. Y., Li P. P., Meng Y., Fang Z. W., Xiao D., Yu G. H., Nat. Catal., 2021, 4(7), 615—622 |
74 | Lee S. H., Kim J., Chung D. Y., Yoo J. M., Lee H. S., Kim M. J., Mun B. S., Kwon S. G., Sung Y. E., Hyeon T., J. Am. Chem. Soc., 2019, 141(5), 2035—2045 |
75 | Yang G., Choi W., Pu X., Yu C., Energy Environ. Sci., 2015, 8(6), 1799—1807 |
76 | Jiang H. L., Liu B., Lan Y. Q., Kuratani K., Akita T., Shioyama H., Zong F. Q., Xu Q., J. Am. Chem. Soc., 2011, 133(31), 11854—11857 |
77 | Zhang J. Q., Zhao Y. F., Chen C., Huang Y. C., Dong C. L., Chen C. J., Liu R. S., Wang C. Y., Yan K., Li Y. D., Wang G. X., J. Am. Chem. Soc., 2019, 141(51), 20118—20126 |
78 | Jia Y., Xiong X. Y., Wang D. N., Duan X. X., Sun K., Li Y. J., Zheng L. R., Lin W. F., Dong M. D., Zhang G. X., Liu W., Sun X. M., Nano⁃Micro Lett., 2020, 12(1), 116 |
79 | Zhang H. B., Zhou W., Chen T., Guan B. Y., Li Z., Lou X. W., Energy Environ. Sci., 2018, 11(8), 1980—1984 |
[1] | YANG Jingyi, SHI Siqi, PENG Huaitao, YANG Qihao, CHEN Liang. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220349. |
[2] | CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua. S-doped Fe-N-C as Catalysts for Highly Reactive Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220341. |
[3] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[4] | ZHANG Xiaoyu, XUE Dongping, DU Yu, JIANG Su, WEI Yifan, YAN Wenfu, XIA Huicong, ZHANG Jianan. MOF-derived Carbon-based Electrocatalysts Confinement Catalyst on O2 Reduction and CO2 Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210689. |
[5] | HE Yujing, LI Jiale, WANG Dongyang, WANG Fuling, XIAO Zuoxu, CHEN Yanli. Zinc-based Activated Fe/Co/N Doped Biomass Carbon Electrocatalysts with High Oxygen Reduction Activity [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220475. |
[6] | MA Jun, ZHONG Yang, ZHANG Shanshan, HUANG Yijun, ZHANG Lipeng, LI Yaping, SUN Xiaoming, XIA Zhenhai. Design and Theoretical Calculation of Heteroatoms Doped Graphdiyne Towards Efficiently Catalyzing Oxygen Reduction and Evolution Reactions [J]. Chem. J. Chinese Universities, 2021, 42(2): 624. |
[7] | WANG Yuemin, MENG Qinglei, WANG Xian, GE Junjie, LIU Changpeng, XING Wei. Enhancement of Performance of Fe-N-C Catalysts by Copper and Sulfur Doping for the Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2020, 41(8): 1843. |
[8] | YIN Wenjing, LIU Xiao, QIAN Huidong, ZOU Zhiqing. Preparation and Oxygen Reduction Performance of Fe, N co-Doped arbon Nanoplate with High Density of Active Sites† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1480. |
[9] | XU Zhaoquan, MA Junhong, SHI Minhui, FENG Chao, XIE Yahong, MI Hongyu. Preparation and Application of a Novel Natural Product-based Fe and N Codoped Carbon Catalyst for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1532. |
[10] | WANG Xiuli, HE Xingquan. Electrocatalytic Performance of Fe9S10 Nanoparticles Loaded Nitrogen and Sulphur Codoped Porous Carbon for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1524. |
[11] | HUANG Jipei,LI Yi,YANG Shenhui,ZHOU Yazhou,CHENG Xiaonong,ZHU Jia,YANG Juan. Synthesis of Three-dimensional Pt-Ag Aerogels and Their Electrocatalytic Performance Toward Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(5): 1063. |
[12] | DI Muxin, XIAO Guozheng, HUANG Peng, CAO Yihuan, ZHU Ying. Co/N Co-doped Carbon Nanotube/Graphene Composites as Efficient Electrocatalysts for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(2): 343. |
[13] | LIU Pei, CHENG Qingqing, CHEN Chi, ZOU Liangliang, ZOU Zhiqing, YANG Hui. Preparation and Oxygen Reduction Reaction Catalytic Performance of Fe, N Co-doped Carbon Nanofibers with Encapsulated Iron Nitride† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2492. |
[14] | KANG Huan, LI Shang, LIU Chang, GUO Wei, PAN Mu. Synthesis of Ordered Mesoporous Fe-N-C-PANI Catalyst via Self-assembly and Its Oxygen Reduction Reaction Activity in Acid Medium [J]. Chem. J. Chinese Universities, 2017, 38(8): 1423. |
[15] | LI Weilun, YAO Ying, ZHANG Cunzhong. Applications of Carbon Fiber Ultra-microelectrode and Powder Microelectrode in Exploring Influences of Non-aqueous Solvents and Cathode Materials on ORR and OER† [J]. Chem. J. Chinese Universities, 2017, 38(4): 642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||