Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (5): 1581.doi: 10.7503/cjcu20210035
• Article • Previous Articles Next Articles
YANG Xiaomei, WU Qiang, GUO Ru, YE Kaibo, XUE Ping(), WANG Xiaozhong, LAI Xiaoyong(
)
Received:
2021-01-18
Online:
2021-05-10
Published:
2021-05-08
Contact:
XUE Ping,LAI Xiaoyong
E-mail:ping@nxu.edu.cn;xylai@nxu.edu.cn
Supported by:
CLC Number:
TrendMD:
YANG Xiaomei, WU Qiang, GUO Ru, YE Kaibo, XUE Ping, WANG Xiaozhong, LAI Xiaoyong. Ordered Mesoporous NiS-loaded CdS with Ultrathin Frameworks for Efficient Photocatalytic H2 Production[J]. Chem. J. Chinese Universities, 2021, 42(5): 1581.
Fig.3 Nitrogen adsorption?desorption isotherms of ordered mesoporous silica KIT?6(a), ordered mesoporous CdS after removal of KIT?6(b) and commercial CdS(c)
Fig.5 TEM image of ordered mesoporous CdS without NiS(A), HRTEM images of ordered mesoporous CdS without(B) and with(C) NiS, HADF STEM image of ordered mesoporous CdS with NiS(D1) and the corresponding elemental maps for Cd, Ni and S(D2—D4)
Fig.6 Time courses of H2 evolvation rates for ordered mesoporous CdS(50 mg) loaded with different amounts of NiSAmounts of NiS/μmol: a. 3; b. 5; c. 20; d. 500. e. commercial CdS(50 mg) loaded with 5 μmol of NiS.
Fig.7 Average H2 evolvation rates for ordered mesoporous CdS(50 mg) loaded with different amounts of NiSAmounts of NiS/μmol: a. 3; b. 5; c. 20; d. 500. e. commercial CdS(50 mg) loaded with 5 μmol of NiS.
1 | Fujishima A., Honda K., Nature, 1972, 238, 37—38 |
2 | Vamvasakis I., Liu B., Armatas G. S., Adv. Funct. Mater., 2016, 26(44), 8062—8071 |
3 | Wang Q., Domen K., Chem. Rev., 2020, 120(2), 919—985 |
4 | Takata T., Jiang J. Z., Sakata Y., Nakabayashi M., Shibata N., Nandal V., Seki K., Hisatomi T., Domen K., Nature, 2020, 581(7809), 411—414 |
5 | Tang H. L., Ren Y., Wei S. H., Liu G., Xu X. X., Rare Metals, 2019, 38(5), 453—458 |
6 | Tong Z., Yang D., Li Z., Nan Y., Ding F., Shen Y., Jiang Z., ACS Nano, 2017, 11(1), 1103—1112 |
7 | Li Q., Li X., Wageh S., Al-Ghamdi A. A., Yu J., Adv. Energy Mater., 2015, 5(14), 1—28 |
8 | Li C., Zhang J., Xu Q., Feng Z., Li M., Angew. Chem. Int. Ed., 2008, 47(9), 1766—1769 |
9 | Xiao Y. Q., Feng C., Fu J., Wang F. Z., Li C. L., Kunzelmann V. F., Jiang C. M., Nakabayashi M., Shibata N., Sharp I. D., Domen K., Li Y. B., Nat. Catal., 2020, 3(11), 932—940 |
10 | Lin Y. C., Tsai D. C., Chang Z. C., Shieu F. S., Appl. Surf. Sci., 2018, 440, 1227—1234 |
11 | Ai Z., Zhao G., Zhong Y., Shao Y., Huang B., Wu Y., Hao X., Appl. Catal. B, 2018, 221, 179—186 |
12 | Wakerley D. W., Kuehnel M. F., Orchard K. L., Ly K. H., Rosser T. E., Reisner E., Nat. Energ., 2017, 2(4), 17021 |
13 | Hu K. Y., Xu Z., Liu Y. T., Huang F. Q., Chem. Res. Chinese Universities, 2020, 36(6), 1102—1107 |
14 | Ye H. F., Shi R., Yang X., Fu W. F., Chen Y., Appl. Catal. B⁃Environ., 2018, 233, 70—79 |
15 | Li K. Q., Xiong H. L., Wang X., Ma Y. L., Gao T. N., Liu Z. L., Liu Y. L., Fan M. H., Zhang L., Song S. Y., Qiao Z. A., Inorg. Chem., 2020, 59(7), 5063—5071 |
16 | Wang Y., Li L. P., Li G. S., Chem. Res. Chinese Universities, 2020, 36(6), 1053—1058 |
17 | Yin Y. G., Wei S. T., Zhang L., Guo Z. W., Huang H. H., Sai S. R., Wu J. D., Xu Y. C., Liu Y., Zheng L. R., Fan X. F., Cui X. Q., Chem. Res. Chinese Universities, 2020, 36(6), 1122—1127 |
18 | Liu M. Y., You W. S., Lei Z. B., Takata T., Domen K., Li C., Chin. J. Catal., 2006, 27(7), 556—558 |
19 | Zong X., Yan H. J., Wu G. P., Ma G. J., Wen F. Y., Wang L., Li C., J. Am. Chem. Soc., 2008, 130(23), 7176—7177 |
20 | Cheng L., Xiang Q., Liao Y., Zhang H., Energ. Environmental Sci., 2018, 11(6), 1362—1391 |
21 | Zhu Y. X., Jiang X., Lin L., Wang S. H., Chen C., Chem. Res. Chinese Universities, 2020, 36(6), 1032—1038 |
22 | Yu H., Zhong W., Huang X., Wang P., Yu J., ACS Sustain. Chem. Eng., 2018, 6(4), 5513—5523 |
23 | Wang J., Li B., Chen J., Li N., Zheng J., Zhao J., Zhu Z., J. Alloy. Compd., 2012, 535, 15—20 |
24 | Xu Y., Zhao W., Xu R., Shi Y., Zhang B., Chem. Commun., 2013, 49(84), 9803—9805 |
25 | Cheng L., Zhang D., Liao Y., Zhang H., Xiang Q., Sol. RRL, 2019, 3(6), 1900062 |
26 | Ba Q., Jia X., Huang L., Li X., Chen W., Mao L., Int. J. Hydrogen Energy, 2019, 44(12), 5872—5880 |
27 | Zhang L., Fu X., Meng S., Jiang X., Wang J., Chen S., J. Mater. Chem. A, 2015, 3(47), 23732—23742 |
28 | Wu K., Rodríguez⁃Córdoba W., Lian T., J. Phys. Chem. B, 2014, 118(49), 14062—14069 |
29 | Wu K., Zhu H., Lian T., Acc. Chem. Res., 2015, 48(3), 851—859 |
30 | Yan H. J., Yang J. H., Ma G. J., Wu G. P., Zong X., Lei Z. B., Shi J. Y., Li C., J. Catal., 2009, 266(2), 165—168 |
31 | Bao N., Shen L., Takata T., Lu D., Domen K., Chem. Lett., 2006, 35(3), 318—319 |
32 | Zhukovskyi M., Tongying P., Yashan H., Wang Y. X., Kuno M., ACS Catal., 2015, 5(11), 6615—6623 |
33 | Yuan J. L., Wen J. Q., Gao Q. Z., Chen S. C., Li J. M., Li X., Fang Y. P., Dalton Trans., 2015, 44(4), 1680—1689 |
34 | Wang H., Chen W., Zhang J., Huang C. P., Mao L. Q., Int. J. Hydrogen Energy, 2015, 40(1), 340—345 |
35 | Cao S., Chen Y., Hou C. C., Lv X. J., Fu W. F., J. Mater. Chem. A, 2015, 3(11), 6096—6101 |
36 | Chen X. P., Chen W., Gao H. Y., Yang Y., Shangguan W. F., Appl. Catal. B⁃Environ., 2014, 152, 68—72 |
37 | Chen S., Chen X. P., Jiang Q. Z., Yuan J., Lin C. F., Shangguan W. F., Appl. Surf. Sci., 2014, 316, 590—594 |
38 | Zhang J., Qiao S. Z., Qi L. F., Yu J. G., Phys. Chem. Chem. Phys., 2013, 15(29), 12088—12094 |
39 | Simon T., Bouchonville N., Berr M. J., Vaneski A., Adrovic A., Volbers D., Wyrwich R., Doblinger M., Susha A. S., Rogach A. L., Jackel F., Stolarczyk J. K., Feldmann J., Nature Mater., 2014, 13(11), 1013—1018 |
40 | Zhang W., Wang Y. B., Wang Z., Zhong Z. Y., Xu R., Chem. Commun., 2010, 46(40), 7631—7633 |
41 | Jiang D., Zhu L., Irfan R. M., Zhang L., Du P., Chin. J. Catal., 2017, 38(12), 2102—2109 |
42 | Kleitz F., Choi S. H., Ryoo R., Chem. Commun., 2003,(17), 2136—2137 |
43 | Olshavsky M. A., Allcock H. R., Chem. Mater., 1997, 9(6), 1367—1376 |
44 | Yang J., Su H., Wu Y., Li D., Zhang D., Sun H., Yin S., Chem. Eng. J., 2020, 127607 |
45 | Lai X., Shen G., Xue P., Yan B., Wang H., Li P., Xia W., Fang J., Nanoscale, 2015, 7(9), 4005—4012 |
46 | Ding C., Ma Y., Lai X., Yang Q., Xue P., Hu F., Geng W., ACS Appl. Mater. Inter., 2017, 9(21), 18170—18177 |
47 | Liu Y., Ma Y., Liu W., Shang Y., Zhu A., Tan P., Xiong X., Pan J., J. Colloid Inter. Sci., 2018, 513, 222—230 |
48 | Liu X. Y., Tian B. Z., Yu C. Z., Tu B., Liu Z., Terasaki O., Zhao D. Y., Chem. Lett., 2003, 32(9), 824—825 |
49 | Gao F., Lu Q. Y., Zhao D. Y., Adv. Mater., 2003, 15(9), 739—742 |
50 | Lee Y. Y., Moon J. H., Choi Y. S., Park G. O., Jin M. S., Jin L. Y., Li D., Lee J. Y., Son S. U., Kim J. M., J. Phys. Chem. C, 2017, 121(9), 5137—5144 |
[1] | HUAN Xinyu, LAI Ganqiang, HUANG Yue, YANG Caiguang. Research Progress on Chemical Intervention of N6-methyladenosine Modification [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220340. |
[2] | PENG Kuilin, LI Guilin, JIANG Chongyang, ZENG Shaojuan, ZHANG Xiangping. Research Progress for the Role of Electrolytes in the CO2 Electrochemical Reduction [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220238. |
[3] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[4] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[5] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[6] | ZHOU Leilei, CHENG Haiyang, ZHAO Fengyu. Research Progress of CO2 Hydrogenation over Pd-based Heterogeneous Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220279. |
[7] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[8] | REN Nana, XUE Jie, WANG Zhifan, YAO Xiaoxia, WANG Fan. Effects of Thermodynamic Data on Combustion Characters of 1,3-Butadiene [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220151. |
[9] | GAO Zhiwei, LI Junwei, SHI Sai, FU Qiang, JIA Junru, AN Hailong. Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220080. |
[10] | CHANG Yunfei, LIAO Mingyi, WEN Jiaming. Reduction Performance and Mechanism of Liquid Terminated-carboxyl Fluoroelastomers Using NaBH4/MCl x Reduction System [J]. Chem. J. Chinese Universities, 2022, 43(6): 20210835. |
[11] | ZHANG Shiyu, HE Runhe, LI Yongbing, WEI Shijun, ZHANG Xingxiang. Fabrication of Lithium-sulfur Battery Cathode with Radiation Crosslinked Low Molecular Weight of Polyacrylonitrile and the Mechanism of Sulfur Storage [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210632. |
[12] | BI Gening, XIAO Xiaohua, LI Gongke. Development and Validation of Multiple Physical Fields Coupling Model for Microwave-assisted Extraction [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210739. |
[13] | SUN Cuihong, LYU Liqiang, LIU Ying, WANG Yan, YANG Jing, ZHANG Shaowen. Mechanism and Kinetics on the Reaction of Isopropyl Nitrate with Cl, OH and NO3 Radicals [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210591. |
[14] | WEN Zhiguo, QIAO Zaiyin, TIAN Chong, MAXIM Borzov, NIE Wanli. Catalytic Activity and Reaction Mechanism of FLPs for the Reduction of Enamine [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220555. |
[15] | CHANG Sihui, CHEN Tao, ZHAO Liming, QIU Yongjun. Thermal Degradation Mechanism of Bio-based Polybutylactam Plasticized by Ionic Liquids [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||