Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (3): 20240361.doi: 10.7503/cjcu20240361
• Analytical Chemistry • Previous Articles Next Articles
YANG Yanmei1, RAN Yuqing1, WANG Cun1,2()
Received:
2024-07-22
Online:
2025-03-10
Published:
2024-09-12
Contact:
WANG Cun
E-mail:wangcun5224@126. com
Supported by:
CLC Number:
TrendMD:
YANG Yanmei, RAN Yuqing, WANG Cun. Synthesis of Graphene Oxide Terbium Complex Electrochemiluminescence Material and Sensitive Detection of Tetracycline[J]. Chem. J. Chinese Universities, 2025, 46(3): 20240361.
Method | Linear range/(mol·L-1) | LOD/(mol·L-1) | Ref. |
---|---|---|---|
Fluorescence | 1.0×10-7—1.5×10-5 | 1.3×10-8 | [ |
Colorimetric | 3.0×10-7—6.0×10-6 | 5.0×10-9 | [ |
Chemoluminescence | 2.0×10-7—5.0×10-6 | 6.0×10-8 | [ |
Electrochemistry | 5.0×10-7—5.0×10-6 | 1.8×10-8 | [ |
Photoelectrochemistry | 1.0×10-11—1.0×10-8 | 3.0×10-12 | [ |
ECL | 1.0×10-12—1.0×10-4 | 4.4×10-13 | This work |
Table 1 Comparison of different TC detection methods
Method | Linear range/(mol·L-1) | LOD/(mol·L-1) | Ref. |
---|---|---|---|
Fluorescence | 1.0×10-7—1.5×10-5 | 1.3×10-8 | [ |
Colorimetric | 3.0×10-7—6.0×10-6 | 5.0×10-9 | [ |
Chemoluminescence | 2.0×10-7—5.0×10-6 | 6.0×10-8 | [ |
Electrochemistry | 5.0×10-7—5.0×10-6 | 1.8×10-8 | [ |
Photoelectrochemistry | 1.0×10-11—1.0×10-8 | 3.0×10-12 | [ |
ECL | 1.0×10-12—1.0×10-4 | 4.4×10-13 | This work |
Sample | Added/(mol·L-1) | Found/(mol·L-1) | Recovery(%) | RSD(%)(n=3) |
---|---|---|---|---|
Tap water | 1×10-8 | 1.047×10-8 | 104.7 | 2.8 |
1.072×10-8 | 107.2 | |||
1.005×10-8 | 100.5 | |||
1×10-9 | 1.054×10-9 | 105.4 | 1.4 | |
1.028×10-9 | 102.8 | |||
1.021×10-9 | 102.1 | |||
1×10-10 | 1.023×10-10 | 104.8 | 1.5 | |
1.016×10-10 | 102.3 | |||
1.050×10-10 | 101.6 | |||
1×10-11 | 1.023×10-11 | 102.3 | 1.5 | |
1.047×10-11 | 104.7 | |||
1.059×10-11 | 105.9 |
Table 2 Determination results of TC in tap water samples
Sample | Added/(mol·L-1) | Found/(mol·L-1) | Recovery(%) | RSD(%)(n=3) |
---|---|---|---|---|
Tap water | 1×10-8 | 1.047×10-8 | 104.7 | 2.8 |
1.072×10-8 | 107.2 | |||
1.005×10-8 | 100.5 | |||
1×10-9 | 1.054×10-9 | 105.4 | 1.4 | |
1.028×10-9 | 102.8 | |||
1.021×10-9 | 102.1 | |||
1×10-10 | 1.023×10-10 | 104.8 | 1.5 | |
1.016×10-10 | 102.3 | |||
1.050×10-10 | 101.6 | |||
1×10-11 | 1.023×10-11 | 102.3 | 1.5 | |
1.047×10-11 | 104.7 | |||
1.059×10-11 | 105.9 |
1 | Park J., Gasparrini A. J., Reck M. R., Symister C. T., Elliott J. L., Vogel J. P., Wencewicz T. A., Dantas G., Tolia N. H., Nat. Chem. Biol., 2017, 13(7), 730—736 |
2 | Rusu A., Buta E. L., Pharmaceutics, 2021, 13(12), 30 |
3 | Li C. H., Yang W. X., Zhang X. S., Han Y., Tang W. Z., Yue T. L., Li Z. H., J. Mater. Chem. C, 2020, 8(6), 2054—2064 |
4 | Fernández R., Ruiz A. I., García⁃Delgado C., González⁃Santamaría D. E., Antón⁃Herrero R., Yunta F., Poyo C., Hernández A., Eymar E., Cuevas J., Science of the Total Environment, 2018, 645, 146—155 |
5 | Antón⁃Herrero R., García⁃Delgado C., Alonso⁃Izquierdo M., García⁃Rodríguez G., Cuevas J., Eymar E., Applied Clay Science, 2018, 160, 162—172 |
6 | Supharoek S. A., Ponhong K., Weerasuk B., Siriangkhawut W., Grudpan K., J. Iran Chem. Soc., 2020, 17(9), 2385—2395 |
7 | Yang C. Y., Bie J. X., Zhang X. M., Yan C. Y., Li H. J., Zhang M. H., Su R. F., Zhang X. G., Sun C. Y., Spectroc. Acta Pt. A: Molec. Biomolec. Spectr., 2018, 202, 382—388 |
8 | Zhou J. J., Xu Z. Q., Anal. Methods, 2022, 14(2), 174—179 |
9 | Nunes M. J., Paz V., Cordas C. M., Noronha J. P., Branco L. C., Anal. Methods, 2022, 14(9), 935—948 |
10 | Hu L. Z., Xu G. B., Chem. Soc. Rev., 2010, 39(8), 3275—3304 |
11 | Zhu D., Zhang Y., Bao S. S., Wang N. N., Yu S. Q., Luo R. G., Ma J., Ju H. X., Lei J. P., J. Am. Chem. Soc., 2021, 143(8), 3049—3053 |
12 | Nie Y. M., Tao X. L., Zhou Y., Yuan X. D., Zhuo Y., Chai Y. Q., Yuan R., Anal. Chem., 2021, 93(2), 1120—1125 |
13 | Zhong Z. Y., Tang Y., Chen Y. R., Wang C. F., Zhao F. Q., Zeng B. Z., Microchem J., 2023, 195, 8 |
14 | Kuang G. R., Wang C., Song L., Zhang G., Yang Y. Q., Fu Y. Z., Food Chem., 2023, 403, 8 |
15 | Li Y., Jiang Z. W., Xiao S. Y., Huang C. Z., Li Y. F., Anal. Chem., 2018, 90(20), 12191—12197 |
16 | Tang X. Y., Controllable Preparation of Nano⁃graphene Oxide and its Applications in Chemical Separation and Energy Storage, Xiamen University, Xiamen, 2018 |
汤兴艳. 纳米氧化石墨烯的可控制备及其在物质分离和能源储存中的应用, 厦门: 厦门大学, 2018 | |
17 | Ho K. C., Teow Y. H., Mohammad A. W., Ang W. L., Lee P. H., J. Membr. Sci., 2018, 552, 189—201 |
18 | Shi B. B., Wu H., Shen J. L., Cao L., He X. Y., Ma Y., Li Y., Li J. Z., Xu M. Z., Mao X. L., Qiu M., Geng H. B., Yang P. F., Jiang Z. Y., ACS Nano, 2019, 13(9), 10366—10375 |
19 | Liang J., Liu T. Q., Li Y. F., Liang W. B., Zhang X., Qian L. J., Li Z., Chen X. M., Cell Rep. Phys. Sci., 2022, 3(3), 15 |
20 | Li B. J., Tang W. J., Sun D., Li B. B., Ge Y. X., Ye X., Fang W., J. Membr. Sci., 2021, 640, 13 |
21 | Tong Y. J., Yu L. D., Zheng J. T., Liu G. F., Ye Y. X., Huang S. M., Chen G. S., Yang H. S., Wen C., Wei S. B., Xu J. Q., Zhu F., Pawliszyn J., Ouyang G. F., Anal. Chem., 2020, 92(23), 15550—15557 |
22 | Yang Y., Zhang J. L., Liang W. B., Zhang J. L., Xu X. L., Zhang Y. J., Yuan R., Xiao D. R., Sens. Actuator B: Chem., 2022, 362, 7 |
23 | Li M., Zhang K., Ao L., Wu J., Li J. W., Environmental Impact Assessment., 2023, 45(1), 100—104 |
李勉, 张可, 敖亮, 吴进, 李嘉雯. 环境影响评价, 2023, 45(1), 100—104 | |
24 | Fan R. Q., Wang P., Ren J. Y., Zhou G. P., Yang Y. L., Spectroscopy and Spectral Analysis, 2011, 31(7), 1734—1738 |
范瑞清, 王平, 任锦宇, 周广鹏, 杨玉林. 光谱学与光谱分析, 2011, 31(7), 1734—1738 | |
25 | Yu H., Cheng N. N., Xu D. F., Lin J. R., He Q. Z., J. Chinese Society of Rare Earths, 2014, 32(3), 328—337 |
郁慧, 程宁宁, 许东芳, 林静容, 何其庄. 中国稀土学报, 2014, 32(3), 328—337 | |
26 | Meng F. M., Wang L. N., Cui J. B., J. Alloy. Compd., 2013, 556, 102—108 |
27 | Shi J., Claussen J. C., McLamore E. S., ul Haque A., Jaroch D., Diggs A. R., Calvo⁃Marzal P., Rickus J. L., Porterfield D. M., Nanotechnology, 2011, 22(35), 355502 |
28 | Han Q., Wang C., Liu P. K., Zhang G., Song L., Fu Y. Z., Biosens. Bioelectron., 2021, 191, 8 |
29 | Liu X. N., Electrochemical Sensor Based on Copper Nitrogen⁃doped Carbon Derived Materials for the Detection of Nitrite in Food, Shandong Agricultural University, Taian, 2022 |
刘校男. 基于铜氮掺杂碳衍生材料的电化学传感器检测食品中的亚硝酸盐, 泰安: 山东农业大学, 2022 | |
30 | Yuan M., Application of Fluorescent Sensors for the Detection of Anthrax Biomarkers and Tetracycline, Huazhong Agricultural University, Wuhan, 2023 |
袁密. 荧光传感器在炭疽生物标志物和四环素检测中的应用, 武汉: 华中农业大学, 2023 | |
31 | Liu D. M., Application of Aptamer⁃functionalized Gold and Silver Nanomaterials in the Colorimetric Detection of Tetracy, Nanchang University, Nanchang, 2022 |
刘丁闽. 基于适配体功能化金银纳米材料比色法检测四环素, 南昌: 南昌大学, 2022 | |
32 | Lau C., Lu J., Kai M., Anal. Chim. Acta, 2004, 503(2), 235—239 |
33 | Besharati M., Hamedi J., Hosseinkhani S., Saber R., Bioelectrochemistry, 2019, 128, 66—73 |
34 | Jiang K. T., Portable Photoelectrochemical Aptasensor for Detection of Tetracycline Residue in Fish Based on Bi2S3/g⁃C3N4 Heterojunction, Jiangsu University, Zhenjiang, 2022 |
蒋开拓. 基于Bi2S3/g⁃C3N4异质结的便携式光电化学适配体传感方法检测鱼肉四环素残留研究, 镇江: 江苏大学, 2022 |
[1] | ZHENG Delun, ZHANG Ruilong. Construction of an Ultrasensitive AFP Photoelectrochemical Analysis Based on the Efficient Carrier Separation Capability of p-n Heterojunction CuO/TiO2 Complexes [J]. Chem. J. Chinese Universities, 2024, 45(8): 20240183. |
[2] | WEI Chaoxian, LI Nansheng, PANG Yuanhao, ZHANG Yun, JIN Wenying, YUAN Yali. Synthesis of Carbon Nanopolymers Based on Deep Eutectic Strategy for Simultaneous Electrochemical Detection of a Variety of Biological Small Molecules [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240103. |
[3] | HUANG Shengxiu, LIU Liyang, YANG Weiqiang, WANG Qingxiang, NI Jiancong. Detection of Perfluorooctane Sulfonate in Aqueous Environment Based on Molecular Imprinting Coupled Bipolar Electrochemiluminescence Sensor [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240106. |
[4] | CHEN Yating, WANG Peng, GUO Baoying, FU Siyun, LIU Wanning, CHEN Shuyi, SHI Yu, CAI Songliang, ZHENG Shengrun, FAN Jun, ZHANG Weiguang. Assembly of Functionalized MIL-101(Cr)-loaded Quartz Crystal Microbalance Gas Sensors for Formic Acid Detection [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240031. |
[5] | MA Qinzheng, WANG Wei, LIANG Xuting. Graphene⁃gold Nanomaterial Modified Electrode for the Detection of L-Tyrosine [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230521. |
[6] | CHEN Xiaoping, WANG Xutan, LIU Ning, WANG Qingxiang, NI Jiancong, YANG Weiqiang, LIN Zhenyu. MOFs-based Microfluidic Chips for Real-time Online Determination of Multiple Heavy Metal Ions [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230395. |
[7] | LI Jiahui, ZHANG Jian, YAN Long, FENG Yun, ZHANG Jiali, LIU Yongxin, YANG Shaoming. Preparation and Detection Performance of Norfloxacin Imprinted Electrochemical Sensor [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240322. |
[8] | LI Shixuan, MENG Hua, YIN Xuehu, YI Jinfei, MA Lihong, ZHANG Yanli, WANG Hongbin, YANG Wenrong, PANG Pengfei. A Double-Chamber Enzymatic Biofuel Cells-based Self-powered Glucose Biosensor Based on Graphene/Gold Nanoparticles/Titanium Carbide Nanocomposite [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240301. |
[9] | ZENG Xiangchu, YE Yuting, WU Zhe, WEI Ruisong, LIU Huan. Intramolecular Electron Transfer Mechanism of pH-Mediated Cupric Complexes Activated Peroxymonosulfate Selective Oxidation of Aqueous Tetracycline [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240337. |
[10] | WANG Jiarui, LI Chunli, CHENG Jiahao, HAO Yaling, ZHOU Nan, YANG Peng. Functional Regulation and Mechanism of Phosphoric Acid in GO Intercalation Stage [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230410. |
[11] | ZHU Runzhi, WANG Yi, NA Jiaxue, CAO Lele, ZHANG Hui, WANG Yinghui, MENG Zhe. A Ratiometric Luminescent Sensor Based on Photoinduced Electron Transfer for Quantitative Detection of Dopamine in Biological Samples [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230391. |
[12] | HAO Qiangjun, YE Zi, WEN Bei, PENG Hanyong. Development of Nucleic Acid-mediated Nanomaterials and Their Applications [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230125. |
[13] | LI Yulong, XIE Fating, GUAN Yan, LIU Jiali, ZHANG Guiqun, YAO Chao, YANG Tong, YANG Yunhui, HU Rong. A Ratiometric Electrochemical Sensor Based on Silver Ion Interaction with DNA for the Detection of Silver Ion [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220202. |
[14] | WANG Junyang, LIU Zheng, ZHANG Qian, SUN Chunyan, LI Hongxia. Application of DNA Silver Nanoclusters in the Fluorescence Biosensors based on Functional Nucleic Acids [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220010. |
[15] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||