Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (6): 20240106.doi: 10.7503/cjcu20240106
• Analytical Chemistry • Previous Articles Next Articles
HUANG Shengxiu, LIU Liyang, YANG Weiqiang, WANG Qingxiang, NI Jiancong()
Received:
2024-03-05
Online:
2024-06-10
Published:
2024-04-17
Contact:
NI Jiancong
E-mail:nijiancong@foxmail.com
Supported by:
CLC Number:
TrendMD:
HUANG Shengxiu, LIU Liyang, YANG Weiqiang, WANG Qingxiang, NI Jiancong. Detection of Perfluorooctane Sulfonate in Aqueous Environment Based on Molecular Imprinting Coupled Bipolar Electrochemiluminescence Sensor[J]. Chem. J. Chinese Universities, 2024, 45(6): 20240106.
Sensor | LOD/(nmol·L-1) | Linear range/(μmol·L-1) | Reference |
---|---|---|---|
Fluorescent sensor | 12.8 | 0.05—10 | [ |
Colorimetric sensor | 8.6 | 0.1—12.5 | [ |
MIP sensor MIP/BPECL sensor | 100 0.43 | 10—104 0.001—1 | [ This work |
Table 1 Performance of different electrochemical sensors for the determination of PFOS
Sensor | LOD/(nmol·L-1) | Linear range/(μmol·L-1) | Reference |
---|---|---|---|
Fluorescent sensor | 12.8 | 0.05—10 | [ |
Colorimetric sensor | 8.6 | 0.1—12.5 | [ |
MIP sensor MIP/BPECL sensor | 100 0.43 | 10—104 0.001—1 | [ This work |
Sample | Spiked/(nmol·L-1) | MIP/BPECL | LC⁃MS | ||
---|---|---|---|---|---|
Measured/(nmol·L-1) | Recovrey* | RSD(%) | Measured/(nmol·L-1) | ||
Water 1 | 0 | 0 | 0 | 0 | 0 |
Water 2 | 50 | 42.6 | 85.1 | 10.3 | 41.2 |
Water 3 | 200 | 182.4 | 91.2 | 11.9 | 179.8 |
Water 4 | 500 | 472.5 | 94.5 | 8.7 | 468.5 |
Table 2 Recovery of PFOS in tap water by adding standard
Sample | Spiked/(nmol·L-1) | MIP/BPECL | LC⁃MS | ||
---|---|---|---|---|---|
Measured/(nmol·L-1) | Recovrey* | RSD(%) | Measured/(nmol·L-1) | ||
Water 1 | 0 | 0 | 0 | 0 | 0 |
Water 2 | 50 | 42.6 | 85.1 | 10.3 | 41.2 |
Water 3 | 200 | 182.4 | 91.2 | 11.9 | 179.8 |
Water 4 | 500 | 472.5 | 94.5 | 8.7 | 468.5 |
35 | 中华人民共和国国家卫生和计划生育委员会, GB 31604.35⁃2016, 食品接触材料及制品——全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定, 北京, 食品安全国家标准, 2016 |
1 | Langberg H. A., Breedveld G. D., Slinde G. A., Gronning H. M., Hoisaeter A., Jartun M., Rundberget T., Jenssen B. M., Hale S. E., Environ. Sci. Technol., 2020, 54(20), 13077—13089 |
2 | Gao X., Ni W., Zhu S., Wu Y., Cui Y., Ma J., Liu Y., Qiao J., Ye Y., Yang P., Liu C., Zeng F., Environ. Res., 2021, 201, 111632 |
3 | Chou W. C., Lin Z. M., Environ Int., 2020, 137, 105581 |
4 | Liu L. F., Liu Y., Gao B., Ji R., Li C. L., Wang S. S., Crit. Rev. Env. Sci. Tec., 2019, 50(22), 2379—2414 |
5 | Tian Z. X., Kim S. K., Shoeib M., Oh J. E., Park J. E., Sci. Total Environ., 2016, 553, 266-275 |
6 | GB 5749⁃2022, Standards for Drinking Water Quality, Standards Press of China, Beijing, 2022 |
国家市场监督管理总局, 国家标准化管理委员会, GB 5749⁃2022, 生活饮用水卫生标准, 北京: 中国标准出版社, 2022 | |
7 | Hu H., Liu M., Shen L., Zhang L., Zhu H., Wu Q., J. Chromatogr. B: Analyt. Technol. Biomed Life Sci., 2023, 1224, 123736 |
8 | Harada K. H., Fujii Y., Zhu J., Zheng B., Cao Y., Hitomi T., Environ. Sci. Technol. Lett., 2020, 7, 259—265 |
9 | Kazemi R., Potts E. I., Dick J. E., Anal. Chem., 2020, 92(15), 10597—10605 |
10 | Zhang N., Gao H., Xu C. H., Cheng Y., Chen H. Y., Xu J. J., Anal. Chem., 2019, 91(19), 12553—12559 |
11 | Mo G., He X., Zhou C., Ya D., Feng J., Yu C., Deng B., Biosens. Bioelectron., 2019, 126, 558—564 |
12 | Zhang N., Gao H., Xu C. H., Cheng Y. X., Chen H. Y., Xu J. J., Anal. Chem., 2019, 91(19), 12553—12559 |
13 | Zou Y., Zhang H., Wang Z., Liu Q., Liu Y., Talanta, 2019, 198, 39—44 |
14 | Jia M. F., Zhang Z., Li J. H., Ma X., Chen L. X., Yang X. B., TrAC, 2018, 106, 190—201 |
15 | Xiao N., Deng J., Cheng J., Ju S., Zhao H., Xie J., Qian D., He J., Biosens. Bioelectron., 2016, 81, 54—60 |
16 | Piletsky S., Canfarotta F., Poma A., Bossi A. M., Piletsky S., Trends Biotechnol., 2020, 38(4), 368—387 |
17 | Song Z. H., Li J. H., Lu W. H., Li B. W., Yang G. Q., Bi Y., Arabi M., Wang X. Y., Ma J. P., Chen. X., TrAC, 2022, 146, 116504 |
18 | Mustafa Y. L., Keirouz A., Leese H. S., J. Mater. Chem. B, 2022, 10(37), 7418—7449 |
19 | Qin Y. T., Feng Y. S., Ma Y. J., He X. W., Li W. Y., Zhang Y. K., ACS Appl. Mater. Interfaces, 2020, 12(22), 24585—24598 |
20 | Zhao W. Y., Ma Y., Ye J. S., J. Electroanal. Chem., 2021, 888, 115215 |
21 | Wu M. S., Xu N., Qiao J. T., Chen J. H., Jin L. S., Analyst, 2019, 144, 4633—4638 |
22 | Woo J. H., Kim J., Kim J., J. Electroanal. Chem., 2022, 906, 115998 |
23 | Hu Q. Y., Yang J. Y., Zheng Z. Y., Ding Y. P., Chen Y. W., Gao W. H., Biosens. Bioelectron., 2019, 143, 111627 |
24 | Lu D. N., Zhu D. Z., Gan H. H., Yao Z. Y., Luo J. Y., Yu S. R., Kurup P., Sensor Actuat B: Chem., 2022, 352, 131055 |
25 | Couto R. A. S., Costa S. S., Mounssef B., Pacheco J. G., Fernandes E., Carvalho F., Rodrigues C. M. P., Delerue⁃Matos C., Braga A. A. C., Moreira G. L., Quinaz M. B., Sensor Actuat B: Chem., 2019, 290, 378—386 |
26 | Huang G. Z., Zhan F. P., Wang Q. X., Wei L., Chen J. M., Zheng W. R., Food & Machinery, 2023, 39(1), 24—30 |
黄桂珍, 詹峰萍, 汪庆祥, 魏岚, 陈金美, 郑婉榕. 食品与机械, 2023, 39(1), 24—30 | |
27 | El H. O., García⁃Guzmán J. J., Palacios⁃Santander J. M., Digua K., Amine A., Cubillana⁃Aguilera L., Chemosphere, 2024, 350, 141039 |
28 | Yu Q., Deng S. B., Yu G., Water Res., 2008, 42(12), 3089—3097 |
29 | Cheng Z., Du L. L., Zhu P. P., Chen Q., Tan K. J., Spectrochim Acta A: Mol. Biomole Spectrosc., 2018, 201, 281—287 |
30 | Liu J., Du J. Y., Su Y., Zhao H. M., Microchem. J., 2019, 149, 104019 |
31 | Fang C., Chen Z. L., Megharaj M., Naidu R., Environ. Technol. Innovation., 2016, 5, 52—59 |
32 | Lei S. N., Cong H., Chin. Chem. Lett., 2022, 33(3), 1493-1496 |
33 | Menger R. F., Beck J. J., Borch T., Henry C. S., ACS ES&T Water., 2022, 2(4), .565—572 |
34 | Clark R. B., Dick J. E., ACS Sens., 2020, 5(11), 3591—3598 |
35 | GB 31604.35⁃2016, Food Contact Materials and Products⁃Determination of Perfluorooctane Sulfonic Acid(PFOS) and Perfluorooctanoic Acid(PFOA), National Standards for Food Safety, Beijing, 2016 |
[1] | WANG Gang, LIU Genqi, ZHAO Lingli, WANG Yue, LIU Lisha, SUN Chenxin, MA Xiaoyan. Nonylphenol Molecularly Imprinted 2D Photonic Crystal Hydrogel Sensor [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220757. |
[2] | WANG Bodong, PAN Meichen, ZHUO Ying. Construction of Electrochemiluminescence Sensing Interface Based on Silver Nanoclusters-Silica Nanoparticles and Biomolecular Recognition [J]. Chem. J. Chinese Universities, 2021, 42(11): 3519. |
[3] | LIAO Ni, ZHANG Jieyuan, HUANG Ziyang, ZHAO Yanxi, CHAI Yaqin, YUAN Ruo, ZHUO Ying. Construction of High Efficiency Uric Acid Sensor Based on the co-Crystal Enhanced Electrochemiluminescence from 9,10-Diphenylanthracene-perylene Microcrystals [J]. Chem. J. Chinese Universities, 2020, 41(9): 1989. |
[4] | CAO Zhiyuan, SUN Hui, SU Bin. Electrochemiluminescence of Quantum Dots: Research Progress and Future Perspectives [J]. Chem. J. Chinese Universities, 2020, 41(9): 1945. |
[5] | WANG Xiaoru,ZHANG Na,XING Jun. Preparation and Application of Melamine Imprinted Material Using Itaconic Acid as Multidentate Functional Monomer [J]. Chem. J. Chinese Universities, 2020, 41(7): 1521. |
[6] | ZHANG Jingjing, JIN Rong, FANG Danjun, JIANG Dechen. Voltage Modulated Electrochemiluminescence for Highly Sensitive Detection [J]. Chem. J. Chinese Universities, 2020, 41(11): 2421. |
[7] | LI Ying, KANG Junjun, ZHAO Xueru, XU Wenkai, QI Qi. Preparation of Gold-modified Magnetic Graphene-based Molecularly Imprinted Composites and Electrochemical Sensing Detection of Dinbutyl Phthalate in Water† [J]. Chem. J. Chinese Universities, 2019, 40(3): 448. |
[8] | MENG Zihui,WANG Yifei,XIE Tengsheng,CHEN Wei,QIU Lili,XUE Min. Molecularly Imprinted Hollow Spheres for the Solid Phase Extraction of Protein† [J]. Chem. J. Chinese Universities, 2019, 40(1): 62. |
[9] | XU Wanzhen, QIU Chunxiao, HUANG Weihong, LIU Hong, YANG Wenming. Computer Simulation Design, Preparation and Application of Fluorescence Sensors Based on Quantum Dots for Selective Detection of 4-Nitrophenol in River Water† [J]. Chem. J. Chinese Universities, 2017, 38(7): 1155. |
[10] | SU Tingting, LIU Junbo, TANG Shanshan, JIN Ruifa. Theoretical Design and Experimental Performance Research on Barbital Imprinting Polymer† [J]. Chem. J. Chinese Universities, 2014, 35(10): 2146. |
[11] | XUE Qian-Qian, HE Guang-Zhi, XIA Shu-Wei, PAN Gang. Theoretical Studies on Adsorption of PFOS on Anatase TiO2 Surfaces [J]. Chem. J. Chinese Universities, 2013, 34(7): 1673. |
[12] | LIU Jun-Bo, TANG Shan-Shan, SUN Jia-Ni, JIN Rui-Fa. Theoretical Research on Self-assembly System of Molecular Imprinted Polymers Formed by Ciprofloxacin and Trifluoromethacrylic Acid [J]. Chem. J. Chinese Universities, 2013, 34(11): 2566. |
[13] | XU Wen, LI Xiao, ZHANG Wei-Ying, YING Xiao-Guang. Preparation and Performance of Sensing Films of Molecularly Imprinted Electrochemical Sensor for L-tryptophan [J]. Chem. J. Chinese Universities, 2012, 33(10): 2199. |
[14] | ZHANG Yan, ZHENG Xing-Wang. Synthesis of Ag/SiO2/Chitosan Nanocomposites and Its Analytical Application for Adsorbing Chromium(Ⅵ) [J]. Chem. J. Chinese Universities, 2012, 33(03): 481. |
[15] | XU Zhi-Feng*, KUANG Dai-Zhi, WEN Ge, ZHANG Fu-Xing, WANG Jian-Qiu, LI Jun-Hua. Preparation and Binding Properties in Aqueous Media of Cholic Acid Imprinted Polymers [J]. Chem. J. Chinese Universities, 2011, 32(8): 1727. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||