Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (1): 20230391.doi: 10.7503/cjcu20230391
• Analytical Chemistry • Previous Articles Next Articles
ZHU Runzhi, WANG Yi, NA Jiaxue, CAO Lele, ZHANG Hui, WANG Yinghui, MENG Zhe()
Received:
2023-09-01
Online:
2024-01-10
Published:
2023-10-31
Contact:
MENG Zhe
E-mail:meng_z@nxu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHU Runzhi, WANG Yi, NA Jiaxue, CAO Lele, ZHANG Hui, WANG Yinghui, MENG Zhe. A Ratiometric Luminescent Sensor Based on Photoinduced Electron Transfer for Quantitative Detection of Dopamine in Biological Samples[J]. Chem. J. Chinese Universities, 2024, 45(1): 20230391.
Material | Method | Linear range/(μmol·L-1) | LOD/(μmol·L-1) | Ref. |
---|---|---|---|---|
CQDs | Fluorescent sensor | 0.65—52 | 0.20 | [ |
CDs | Fluorescent sensor | 0.1—6.0 | 0.06 | [ |
BCQDs | Fluorescent sensor | 0.28—1.5 | 6 | [ |
Bi2Fe4O9 NPs | Colorimetric | 0.15—50 | 0.051 | [ |
rGO/PPy | Electrochemical sensor | 200—1200 | 0.061 | [ |
Sr2.992Mg0.9Si2O8∶0.008Eu2+, 0.10Mn2+ | Phosphorescent sensor | 0.2—10 | 0.04 | This work |
Table 1 Comparative analysis of methodologies for quantitative determination of dopamine
Material | Method | Linear range/(μmol·L-1) | LOD/(μmol·L-1) | Ref. |
---|---|---|---|---|
CQDs | Fluorescent sensor | 0.65—52 | 0.20 | [ |
CDs | Fluorescent sensor | 0.1—6.0 | 0.06 | [ |
BCQDs | Fluorescent sensor | 0.28—1.5 | 6 | [ |
Bi2Fe4O9 NPs | Colorimetric | 0.15—50 | 0.051 | [ |
rGO/PPy | Electrochemical sensor | 200—1200 | 0.061 | [ |
Sr2.992Mg0.9Si2O8∶0.008Eu2+, 0.10Mn2+ | Phosphorescent sensor | 0.2—10 | 0.04 | This work |
Analyte | Spiked/(μmol·L-1) | Recovery±SD(%)(n=10) |
---|---|---|
Serum | 1 | 94.8 ± 5.4 |
10 | 102.3 ± 3.1 | |
20 | 104.0 ± 3.8 | |
Urine | 1 | 91.3 ± 4.2 |
10 | 98.7 ± 3.7 | |
20 | 101.6 ± 6.3 | |
Sweat | 1 | 97.4 ± 3.0 |
10 | 101.5 ± 5.3 | |
20 | 105.2 ± 6.7 |
Table 2 Recoveries(%) and precisions(RSD %, n=10) of dopamine in three real samples
Analyte | Spiked/(μmol·L-1) | Recovery±SD(%)(n=10) |
---|---|---|
Serum | 1 | 94.8 ± 5.4 |
10 | 102.3 ± 3.1 | |
20 | 104.0 ± 3.8 | |
Urine | 1 | 91.3 ± 4.2 |
10 | 98.7 ± 3.7 | |
20 | 101.6 ± 6.3 | |
Sweat | 1 | 97.4 ± 3.0 |
10 | 101.5 ± 5.3 | |
20 | 105.2 ± 6.7 |
1 | Huang H. L., Shi S., Gao X., Gao R. R., Zhu Y., Wu X. W., Zang R. M., Yao. T. M., Biosens. Bioelectron., 2016, 79, 198—204 |
2 | Kiss B., Laszlovszky I., Krámos B., Visegrády A., Bobok A., Lévay G., Lendvai V., Román V., Biomolecules, 2021, 11(1), 104 |
3 | Klein M. O., Battagello D. S., Cardoso A. R., Hauser D. N., Bittencourt J. C., Correa R. G., Cell. Mol. Neurobiol., 2019, 39(1), 31—59 |
4 | Chung S. J., Yoo H. S., Oh J. S., Kim J. S., Ye B. S., Sohn Y. H., Lee P. H., Parkinsonism Relat. Disord., 2018, 51, 43—48 |
5 | Hanif F., Amir Q., Washdev W., Bilwani F., Simjee S. U., Haque Z., Arch. Med. Res., 2021, 52(3), 348—353 |
6 | Yu X. J., Han L. L., Hun X., Chem. J. Chinese Universities, 2017, 38(12), 2169—2175 |
于锡娟, 韩璐璐, 混旭. 高等学校化学学报, 2017, 38(12), 2169—2175 | |
7 | Jiang Y. L., Wang B. X., Meng F. D., Cheng Y. X., Zhu C. J., J. Colloid Interface Sci., 2015, 452, 199—202 |
8 | Abu-Ali H., Ozkaya C., Davis F., Walch N., Nabok A., Chemosensors, 2020, 8(2), 28 |
9 | Zhao Y. S., Zhao S. L., Huang J. M., Ye F. G., Talanta, 2011, 85(5), 2650—2654 |
10 | Sangubotla R., Won S., Kim J., J. Photochem. Photobiol. A, 2023, 438, 114542 |
11 | Wei N., Zhao X. E., Zhu S. Y., He Y. R., Zheng L. F., Chen G., You J. M., Liu S., Liu Z. Q., Talanta, 2016, 161, 253—264 |
12 | Wang C. J., Shi H. X., Yang M., Yan Y. J., Liu E. Z., Ji Z., Fan J., J. Photochem. Photobiol. A, 2020, 391, 112374 |
13 | Chen J., Li Y. C., Huang Y. N., Zhang H. J., Chen X. G., Qiu H. D., Microchimica Acta, 2019, 186, 1—9 |
14 | Armstrong-Price D. E., Deore P. S., Manderville R. A., J. Agric. Food Chem., 2020, 68(7), 2249—2255 |
15 | An J., Chen M. Z., Hu N., Hu Y. Q., Chen R. B., Lyu Y., Guo W. X., Li L. J., Liu Y. F., Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 243, 118804 |
16 | Su B. C., Zhang Z., Sun Z. C., Tang Z. W., Xie X. X., Chen Q., Cao H. M., Yu X., Xu Y., Liu X., Hammock B. D., J. Hazard. Mater., 2022, 422, 126838 |
17 | Guo Z. J., Tian J., Cui C. B., Wang Y., Yang H. H., Yuan M., Yu H., Food Control, 2021, 123, 107741 |
18 | Zhao H. X., Liu C. X., Gu Z., Dong L. X., Li F., Yao C., Yang D. Y., Nano Lett., 2019, 20(1), 252—260 |
19 | Yan L. X., Wang B. B., Zhao X., Chen L. J., Yan X. P., ACS Appl. Mater. Interfaces, 2021, 13(51), 60955—60965 |
20 | Jiang Y. Y., Zhao X., Chen L. J., Yang C., Yin X. B., Yan X. P., Talanta, 2020, 218, 121101 |
21 | Yan L. X., Chen L. J., Zhao X., Yan X. P., Adv. Funct. Mater., 2020, 30(14), 1909042 |
22 | Guo J. X., Pan L. M., Wang M. C., Chen L. J., Zhao X., Food Chem., 2023, 413, 135611 |
23 | Pan L. M., Zhao X., Wei X., Chen L. J., Wang C., Yan X. P., Anal. Chem., 2022, 94(16), 6387—6393 |
24 | Medintz I. L., Stewart M. H., Trammell S. A., Susumu K., Delehanty J. B., Mei B. C., Melinger J. S., Blanco⁃Canosa J. B., Dawson P. E., Mattoussi H., Nat. Rev. Mater., 2010, 9(8), 676—684 |
25 | Aitasalo T., Hietikko A., Hölsä J., Lastusaari M., Niittykoski J., Piispanen T., Z. Kristallogr. Suppl., 2007, 26, 461—466 |
26 | Shannon R. D., Acta Crystallog. Sect. A, 1976, 32, 751—767 |
27 | Xiong X. B., Yuan X. M., Song J. Q., Yin G. X., Appl. Spectrosc., 2016, 70(6), 995—1000 |
28 | Gong Y., Wang Y. H., Xu X. H., Li Y. Q., Xin S. Y., Shi L. R., Opt. Mater., 2011, 33(11), 1781—1785 |
29 | Ma W., Long Y. T., Chem. Soc. Rev., 2014, 43(1), 30—41 |
30 | Qu Z. Y., Na W. D., Liu X. T., Liu H., Su X. G., Anal. Chim. Acta, 2018, 997, 52—59 |
31 | Wang Y. X., Kang K., Wang S., Kang W. J., Cheng C., Niu L. M., Guo Z. Y., Sens. Actuators B Chem., 2020, 305, 127348 |
32 | Gao X. W., Feng S. L., Chemical Research and Application, 2023, 35(5), 1225—1230 |
高晓文, 冯素玲. 化学研究与应用, 2023, 35(5), 1225—1230 | |
33 | Tang Z. D., Jiang K., Sun S., Qian S. H., Wang Y. H., Lin H. W., Analyst, 2019, 144(2), 468—473 |
34 | Anju Rais A., Rawat K., Prasad T., Bohidar H. B., Nanotechnology, 2020, 32(2), 025501 |
35 | Razavi M., Barras A., Ifires M., Swaidan A., Khoshkam M., Szunerits S., Kompany⁃Zareh M., Boukherroub R., J. Colloid Interface Sci., 2022, 613, 384—395 |
36 | Akin M., Bayat R., Bekmezci M., Coguplugil Z. K., Sen F., Baghayeri M., Kafash A., Tehranejad‑Javazmi F., Sheikhshoaie I., Carbon Lett., 2023, 33, 1—9 |
[1] | YU Pengdong, GUAN Xinghua, WANG Dongdong, XIN Zhirong, SHI Qiang, YIN Jinghua. Preparation and Properties of Novel Optical and Thermal Dual Response Shape Memory Polymers [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220085. |
[2] | SUN Xuefeng, RENAGUL Abdurahman, YANG Tongsheng, YANG Qianting. Synthesis and Luminescence Properties of Cr,In Co-doped Small Size MgGa2O4 Near-infrared Persistent Luminescence Nanoparticles [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210850. |
[3] | WEI Chuangyu, CHEN Yanli, JIANG Jianzhuang. Fabrication of Electrochemical Sensor for Dopamine and Uric Acid Based on a Novel Dimeric Phthalocyanine-involved Quintuple-decker Modified Indium Tin Oxide Electrode [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210582. |
[4] | WANG Yupeng, ZHAO Yang, LI Mohan, SHI Suqing, GONG Yongkuan. Fabrication of Antifouling-antibacterial Dual Functional Polymer Coating via Dopamine-based Multiple Interactions [J]. Chem. J. Chinese Universities, 2021, 42(3): 811. |
[5] | SUN Qirui, ZHAO Nan, LIU Shuwei, XIN Hua, ZHANG Hao, ZHANG Lening. Polydopamine-coated Fe3O4/methylprednisolone/cyclophosphamide Superparticles for the Magnetic Targeting Treatment of Pulmonary Fibrosis [J]. Chem. J. Chinese Universities, 2021, 42(10): 3225. |
[6] | WANG Qianying, CUI Shuxun. Investigation of Formation Mechanism of Polydopamine by Adding Free Radical Quencher [J]. Chem. J. Chinese Universities, 2020, 41(6): 1378. |
[7] | XIE Fan,WANG Yafang,ZHUO Longhai,QIN Panliang,NING Doudou,WANG Danni,LU Zhaoqing. Preparation and Properties of High Thermal Conductivity Hexagonal Boron Nitride/Aramid Fibrid Composite Film [J]. Chem. J. Chinese Universities, 2020, 41(3): 582. |
[8] | WU Fengren,LIU Yongjia,LU Xuemin,ZHU Bangshang. Controllable Preparation of Polydopamine Modified Gold Nanoflowers and Its Application in Photothermal Therapy [J]. Chem. J. Chinese Universities, 2020, 41(3): 465. |
[9] | LIU Yun, LI Ting, WANG Yang, DONG Weifu. Preparation of Multi-scale Superhydrophobic Cotton/Polydopamine/Silica Composite for Selective Oil Absorption [J]. Chem. J. Chinese Universities, 2019, 40(8): 1775. |
[10] | XIONG Zhengrong,DONG Li,LIU Xiangdong,YANG Yuming. Preparation and Properties Characterization of PDA/PVDF UV Shielding Composite Membranes [J]. Chem. J. Chinese Universities, 2019, 40(4): 849. |
[11] | LI Yuan, WANG Tingting, LI Mei, CHENG Han. Determination of Dopamine Based on RO/Gold Nanoparticles-poly(dienedimethylammonium chloride) Modified Carbon Fiber Microelectrode† [J]. Chem. J. Chinese Universities, 2018, 39(8): 1656. |
[12] | YANG Shuting, LI Qianhui, FAN Yuchang, WANG Qiuxian, DU Ting, YUE Hongyun. Li4Ti5O12 Modification by Bifunctional Bionic Membrane as Anode Materials for Lithium-ion Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2513. |
[13] | CUI Guolian, DAN Nianhua, DAN Weihua. Preparation and Characterization of Novel Dopamine-based Bioadhesive Hydrogels† [J]. Chem. J. Chinese Universities, 2017, 38(2): 318. |
[14] | YU Xijuan, HAN Lulu, HUN Xu. Cu2+ Modified Gold Nanoclusters for Fluorescence Turn-on Detection of Dopamine† [J]. Chem. J. Chinese Universities, 2017, 38(12): 2169. |
[15] | LIU Shumin, ZHENG Yudong, LI Wei, SUN Yi, YUE Lina, ZHAO Zhenjiang. Preparation and Electrochemical Performance of 3D-nanohole PVA/a-MWCNTs Hydrogel Electrode Membrane† [J]. Chem. J. Chinese Universities, 2016, 37(2): 290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||