Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (11): 20250185.doi: 10.7503/cjcu20250185
• Articles: Inorganic Chemistry • Previous Articles Next Articles
QI Wenjia1, ZHAO Kaiqing2, WU Gang2, WUMAIER·Yasen 1(
), TONG Gangsheng2,3(
)
Received:2025-07-02
Online:2025-11-10
Published:2025-09-11
Contact:
WUMAIER·Yasen
E-mail:omerjan@sues.edu.cn;tgs@sjtu.edu.cn
Supported by:CLC Number:
TrendMD:
QI Wenjia, ZHAO Kaiqing, WU Gang, WUMAIER·Yasen , TONG Gangsheng. Fabrication of High-reflectance and Low-thermal-conductivity HGM@TiO₂@ZnO Core-shell-shell Material via Rotational Coating[J]. Chem. J. Chinese Universities, 2025, 46(11): 20250185.
| Method | Sample | Mass fraction(%) | |||||
|---|---|---|---|---|---|---|---|
| O | Na | Si | Ca | Ti | Zn | ||
| Rotational coating | HGM | 75.2 | 2.5 | 17.4 | 4.9 | — | — |
| HGM@TiO2 | 55.1 | 1.9 | 25.7 | 5.5 | 11.8 | — | |
| HGM@TiO2@ZnO | 44.3 | 5.4 | 13.7 | 3.5 | 8.6 | 24.5 | |
| Mechanical stirring | HGM@TiO2 | 70.2 | 1.7 | 19.2 | 3.6 | 5.2 | — |
| HGM@TiO2@ZnO | 70.8 | 1.9 | 16.5 | 3.5 | 4.1 | 3.2 | |
Table 1 Comparative elemental content of two processing methods
| Method | Sample | Mass fraction(%) | |||||
|---|---|---|---|---|---|---|---|
| O | Na | Si | Ca | Ti | Zn | ||
| Rotational coating | HGM | 75.2 | 2.5 | 17.4 | 4.9 | — | — |
| HGM@TiO2 | 55.1 | 1.9 | 25.7 | 5.5 | 11.8 | — | |
| HGM@TiO2@ZnO | 44.3 | 5.4 | 13.7 | 3.5 | 8.6 | 24.5 | |
| Mechanical stirring | HGM@TiO2 | 70.2 | 1.7 | 19.2 | 3.6 | 5.2 | — |
| HGM@TiO2@ZnO | 70.8 | 1.9 | 16.5 | 3.5 | 4.1 | 3.2 | |
| Sample | Visble⁃near infrared reflectivity, R(%) | Thermal conductivity/(W·m-1·K-1) | Ref. |
|---|---|---|---|
| Commercial high reflective coatings | 72.33 | — | [ |
| Acrylic reflective coatings | 51.69 | — | [ |
| Polyurethane reflective coatings | 48.08 | — | [ |
| Highly reflective hull coating | 56.16 | — | [ |
| Silica aerogel films | — | 0.2000 | [ |
| nano⁃TiO2/LHPM | — | 0.1687 | [ |
| Silica aerogel(building thermal insulation | — | 0.07~0.11 | [ |
| PA⁃HGM@TiO2@ZnO | 72.86 | 0.0830 | This work |
Table 2 Comparison of reflectivity and thermal conductivity between PA-HGM and commercial high-reflective coatings/low-thermal-conductivity materials
| Sample | Visble⁃near infrared reflectivity, R(%) | Thermal conductivity/(W·m-1·K-1) | Ref. |
|---|---|---|---|
| Commercial high reflective coatings | 72.33 | — | [ |
| Acrylic reflective coatings | 51.69 | — | [ |
| Polyurethane reflective coatings | 48.08 | — | [ |
| Highly reflective hull coating | 56.16 | — | [ |
| Silica aerogel films | — | 0.2000 | [ |
| nano⁃TiO2/LHPM | — | 0.1687 | [ |
| Silica aerogel(building thermal insulation | — | 0.07~0.11 | [ |
| PA⁃HGM@TiO2@ZnO | 72.86 | 0.0830 | This work |
| [1] | Sand M., Skeie R. B., Sandstad M., Krishnan S., Myhre G., Bryant H., Derwent R., Hauglustaine D., Paulot F., Prather M., Stevenson D., Commun. Earth. Environ., 2023, 4, 1—12 |
| [2] | Frolicher T. L., Fischer E. M., Gruber N., Nature, 2018, 560(7718), 360—364 |
| [3] | Liu J. C., Yin L., Zhang B. L., J. Shandong Norm. U.(Nat. Sci. Ed.), 2025, 40(1), 21—35 |
| 刘嘉晨, 尹乐, 张宝雷. 山东师范大学学报(自然科学版), 2025, 40(1), 21—35 | |
| [4] | Meng F. C., Ren G. Y., Guo J., Zhang L., Zhang R. X., Prog. Geogr., 2020, 39(8), 1296—1307 |
| 孟凡超, 任国玉, 郭军, 张雷, 张瑞雪. 地理科学进展, 2020, 39(8), 1296—1307 | |
| [5] | Gu J., Wu H., Liu J., Ding Y., Huang G., Xu X., Renew. Sust. Energ. Rev., 2024, 189, 113972 |
| [6] | Lin K., Chen S., Zeng Y., Ho T. C., Zhu Y., Wang X., Liu F., Chao C. Y., Wang Z., Tso C. Y., Science, 2023, 382, 691—697 |
| [7] | Doulos L., Santamouris M., Livada I., Sol. Energy, 2004, 77, 231—249 |
| [8] | Kim H. J., Kim D. S., Mun H., Jae H., Dong K., Compos. Commun., 2020, 22, 100432 |
| [9] | Anirudh S., Jayalakshmi C. G., Anand A., Kandasubramanian B., Lsmail S., Eur. Polym. J., 2022, 171, 111163 |
| [10] | Kuperman A. M., Turusov R. A., Gorenberg A. J., Solodilov V. I., Korokhin R. A., Gorbatkina Y. A., Lvanova⁃Mumzhieva V. G., Zhuravleva O. A., Baikov A. V., Mech. Compos. Mater., 2015, 50(6), 705—716 |
| [11] | Zheng S., Liu T., Jiang G., Wen D., Dai T., Yang G., Gu H., Fang C., Constr. Build. Mater., 2024, 411, 134703 |
| [12] | Lin D. Y., Duan P., Yang W. T., Liu Y. F., Pan Q. H., Inorg. Chem. Front., 2020, 7, 1643—1650 |
| [13] | Bao Y., Guo R., Ma J., ACS Appl. Mater. Inter., 2020, 12, 24250—24261 |
| [14] | Hu J., Xu D., Li J., Wang K., Bi Z., Xu G., Xu X., Nano, 2017, 12, 1750080 |
| [15] | Duran⁃Toscano A. A., Díaz de León⁃Hernández J. N., Fuentes⁃Moyado S., Medina⁃Martínez J. A., Hernández⁃Torres J., García⁃González L., Martínez⁃Castillo J., Guzmán⁃Navarro G., Domínguez⁃Nicolás S. M., Hernández⁃Quiroz T., Nano⁃Struct. Nano⁃Objects, 2024, 38, 101138 |
| [16] | Zhang R. S., Zheng W., He F., Xiong X. W., Paint Coat. Ind., 2014, 44(1), 75—79 |
| 张瑞殊, 郑伟, 何方, 熊先支. 涂料工业, 2014, 44(1), 75—79 | |
| [17] | Luo S. X., Yang Y. Q., Zheng Z. L., Yang F. H., New Build. Mater., 1999, (10), 33—34 |
| 罗淑湘, 杨永起, 郑自立, 杨飞华. 新型建筑材料, 1999, (10), 33—34 | |
| [18] | Wu J., Ke K., Qin N., Lin E., Kang Z., Bao D., J. Colloid Interf. Sci., 2023, 636, 167—175 |
| [19] | Li Z. Z., Chen Q. Y., Song Y., Zhu B., Zhu J., Adv. Mater. Technol., 2020, 5(5), 1901007 |
| [20] | Wang X. H., Xue Y. Y., Liu C. S., World Build. Mater., 2003, 5, 42—46 |
| 王学华, 薛亦渝, 刘长生. 建材世界, 2003, 5, 42—46 | |
| [21] | Wang F. X., Chen Z. Y., Yang W. T., Liu L. J., Ren G. J., Liu Y. F., Pan Q. H., Chem. J. Chinese Universities, 2019, 40(1), 24—29 |
| 王芙香, 陈子玉, 杨玮婷, 刘丽娟, 任国建, 刘艳凤, 潘勤鹤. 高等学校化学学报, 2019, 40(1), 24—29 | |
| [22] | Wang D. M., LYU J., Chen C. Q., Wu Y. C., Zheng Z. X., Phys. Test. Chem. Anal.(Part A: Phys. Test.), 2006, 42(1), 19—22 |
| 汪冬梅, 吕珺, 陈长奇, 吴玉程, 郑治祥, 理化检验(物理分册), 2006, 42(1), 19—22 | |
| [23] | Thakur A., Hamamoto T., Ikeda T., Chammingkwan P., Taniike T., Appl. Catal. A⁃Gen., 2020, 595, 117508 |
| [24] | Veluswamy P., Sathiyamoorthy S., Chowdary K. H., Muthusamy O., Krishnamoorthy K., Takeuchi T., Ikeda H., J. Alloy. Compd., 2017, 695, 888—894 |
| [25] | Zhou G. D., Chen S. H., Huang J. H., Zhao X. K., Zhang H., Mater. Sci. Technol., 2012, 2, 1—6 |
| 周国栋, 陈树海, 黄继华, 赵兴科, 张华. 材料科学与工艺, 2012, 2, 1—6 | |
| [26] | Ren J., Guo Q., Chen Z. W., Building Energy, 2022, 50(4), 1—5 |
| 任俊, 郭清, 陈卓武. 建筑节能(中英文), 2022, 50(4), 1—5 | |
| [27] | Yang L. L., Wu Y. D., Huang Z. M., Zheng Y. H., Xie S. B., Paint Coat. Ind., 2024, 54(11), 42—49 |
| 杨丽丽, 武娅娣, 黄志民, 郑益华, 谢松伯. 涂料工业, 2024, 54(11), 42—49 | |
| [28] | Zhang Z., Gao J., Li X. G., New Building Materials, 2018, 45(12), 76—81 |
| 张志, 高瑾, 李晓刚. 新型建筑材料, 2018, 45(12), 76—81 | |
| [29] | Wang Y., Jiang J. S., Zheng H. Z., Guan Z., Pan X. W., Paint Coat. Ind., 2022, 52(2), 84—88 |
| 王燕, 姜经帅, 郑晗祯, 管洲, 潘秀伟. 涂料工业, 2022, 52(2), 84—88 | |
| [30] | Kim G. S., Hyun S. H., J. Non⁃Cryst. Solids, 2003, 320(1—3), 125—132 |
| [31] | Ye C., Wen X. F., Lan J. L., Cai Z. Q., Pi P. H., Xu S. P., Qian Y., Pigment & Resin Technology, 2016, 45(1), 45—51 |
| [32] | Zulhelmi A. A. H., Norhayati A., Muhamad A. M. Y., Prog. Org. Coat., 2025, 201, 109—114 |
| [33] | Bilong J., Nyobe E. N., Hona J., Pemha E., Prog. Electromagn. Res., 2012, 42, 425—453 |
| [34] | Jiménez J. A., Upadhyay D. R.,Amesimenu R., Khanal R., Ceram. Int., 2025, 51, 4904—4917 |
| [35] | Bardalen E., Bouchouri A., Akram M. N., Nguyen H. V., Nanomaterials, 2024, 14(1), 20 |
| [36] | Woo H. J., Han J., Ji S., Shin B. G., Park S. H., Lee S. G., Lee C. W., Hwang E., Kim D. S., Choi S., ACS Nano, 2024, 18(19), 12333—12340 |
| [37] | Ren J., Zong H., Han Y., Liu T., Zhang S., Xu Q., Wu S., Chinese Chem. Lett., 2024, 35, 109350 |
| [38] | Wang P., Liao B., An Z., Yan K. Q., Zhang J., Int. J. Heat Mass Tran., 2018, 129, 591—598 |
| [39] | Wang J. T., Lu G. Z., Paint Coat. Ind., 2004, 34(10), 18—19 |
| 王金台, 路国忠. 涂料工业, 2004, 34(10), 18—19 |
| [1] | ZHANG Zhuoyu, WU Jun, ZHANG Jiaxin, ZHAO Shihao, CUI Minqi, SONG Haojie, LI Yong. Preparation of Superhydrophobic Coal Gangue Photothermal Coating and Its Anti-icing Performance [J]. Chem. J. Chinese Universities, 2025, 46(9): 20250086. |
| [2] | FU Jialin, ZHU Yufeng, YANG Kaiyuan, GUO Yongmei, LU Yan, YAO Tongjie. Preparation of SrAl2O4@SiO2 Core@shell Structure Composites and Their Luminescence and Anti-hydrolysis Property [J]. Chem. J. Chinese Universities, 2025, 46(10): 20250214. |
| [3] | CAI Lei, LI Lizhe, LI Hao, CAI Chang, LI Tiehu. Preparation and Property of Sponge-like Graphene Oxide/Polyethylene Glycol Composite Phase Change Materials [J]. Chem. J. Chinese Universities, 2025, 46(10): 20250035. |
| [4] | ZHAO Ziwang, CONG Shurui, WANG Chunyu, ZHOU Shuyuan, PENG Meng, WANG Lei, XU Jiayu. Study of Ozone Elimination via Chlorine Radical Chain Reaction Under Visible Light [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240187. |
| [5] | LEI Jiahui, LUO Bin, SUN Xiaoqing, ZHANG Yujia, HU Xiaoqin, LAN Fang, WU Yao. Preparation of Graphene Mediated Macrophage Membrane Coating and Its Effects on the Anti-fouling and Immunomodulatory Properties of Tianium Implants [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230451. |
| [6] | HUANG Yuying, YU Chengkun, LIU Siqi, REN Yan. Cell Map of Mouse Peripheral Blood Mononuclear Cells with a Label-free Single-cell Proteomics Method [J]. Chem. J. Chinese Universities, 2024, 45(11): 20240355. |
| [7] | ZHOU Hui, ZHU Shuaibo, WANG Jitong, QIAO Wenming, YU Zijian, ZHANG Yinxu. Construction and Electrochemical Properties of Si/rGO@CN as Anode Materials for High-performance Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230354. |
| [8] | YAN Jiasen, HAN Xianying, DANG Zhaohan, LI Jiangang, HE Xiangming. Preparation and Performance of Paraffin/Expanded Graphite/Graphene Composite Phase Change Heat Storage Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220054. |
| [9] | ZHANG Wenmeng, LI Mengqin, HOU Zhen, CHEN Dongyang. Synthesis and Coating Properties of Carboxylated Fluorinated Poly(arylene ether)s [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210604. |
| [10] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
| [11] | LI Xiaohui, WEI Aijia, MU Jinping, HE Rui, ZHANG Lihui, WANG Jun, LIU Zhenfa. Effects of SmPO4 Coatingon Electrochemical Performance of High-voltage LiNi0.5Mn1.5O4 Cathode Materials [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210546. |
| [12] | ZHAO Mengyang, HUANG Ziyang. Preparation and in vitro Bioactivity of HA/CuO/SrCO3 Gradiently Composite Coating [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210644. |
| [13] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
| [14] | BAI Jingqi, BAI Shan, REN Lixia, ZHU Kongying, ZHAO Yunhui, LI Xiaohui, YUAN Xiaoyan. Trehalose-modified Poly(vinyl alcohol) and Their Antifogging/Antifrosting Coatings [J]. Chem. J. Chinese Universities, 2021, 42(8): 2683. |
| [15] | FAN Xiaoyong, WU Yan, SUN Ruibo, GOU Lei, LI Donglin. Construction and Zn Storage Performance of Three Dimensional Porous MnOx@In2O3 Cubes [J]. Chem. J. Chinese Universities, 2021, 42(6): 1816. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||