Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (6): 1816.doi: 10.7503/cjcu20200896
• Physical Chemistry • Previous Articles Next Articles
FAN Xiaoyong(), WU Yan, SUN Ruibo, GOU Lei, LI Donglin()
Received:
2020-12-26
Online:
2021-06-10
Published:
2021-06-08
Contact:
FAN Xiaoyong,LI Donglin
E-mail:xyfan@chd.edu.cn;dlli@chd.edu.cn
Supported by:
CLC Number:
TrendMD:
FAN Xiaoyong, WU Yan, SUN Ruibo, GOU Lei, LI Donglin. Construction and Zn Storage Performance of Three Dimensional Porous MnOx@In2O3 Cubes[J]. Chem. J. Chinese Universities, 2021, 42(6): 1816.
Material | Cycling performance(low rate) | Cycling performance(high rate) | Rate capability | Ref. |
---|---|---|---|---|
MnO@NGS | 215 mA·h/g after 50 cycles at 100 mA/g | 114.6 mA·h/g after 300 cycles at 500 mA/g | 18.9 mA·h/g at 1.0 A/g | [ |
V?MnO2 | 131 mA·h/g after 100 cycles at 66 mA/g | — | 64 mA·h/g at 1.064 A/g | [ |
α?MnO2 | 147 mA·h/g after 50 cycles at 83 mA/g | — | 16 mA·h/g at 1.666 A/g | [ |
Cu?MnO | 288 mA·h/g after 200 cycles at 150 mA/g | 100 mA·h/g after 1000 cycles at 900 mA/g | 156 mA·h/g at 0.9 A/g | [ |
Mn2O3 | 233 mA·h/g after 120 cycles at 308 mA/g | 146 mA·h/g after 3000 cycles at 3080 mA/g | 162 mA·h/g at 3.080 A/g | [ |
Mn2O3@PPy | 230 mA·h/g after 130 cycles at 100 mA/g | — | 75.6 mA·h/g at 2 A/g | [ |
Mn2O3/Al2O3 | 289 mA·h/g after 125 cycles at 300 mA/g | 118 mA·h/g after 1100 cycles at 1500 mA/g | [ | |
3D?NVO | 487 mA·h/g after 50 cycles at 100 mA/g | 135 mA·h/g after 3000 cycles at 10000 mA/g | 142 mA·h/g at 10 A/g | [ |
Mn3O4@NC | 280 mA·h/g after 80 cycles at 100 mA/g | 97 mA·h/g after 700 cycles at 1000 mA/g | [ | |
SSWM@Mn3O4 | 290 mA·h/g after 50 cycles at 100 mA/g | 110 mA·h/g after 500 cycles at 500 mA/g | 125 mA·h/g at 0.5 A/g | [ |
Mn3O4@C | 390 mA·h/g after 50 cycles at 200 mA/g | 84.1 mA·h/g after 12000 cycles at 50000 mA/g | 133 mA·h/g at 5 A/g | [ |
MnOx@NC | 305 mA·h/g after 600 cycles at 500 mA/g | 100 mA·h/g after 1600 cycles at 2000 mA/g | [ | |
3D MnOx@In2O3 | 260 mA·h/g after 400 cycles at 300 mA/g | 81 mA·h/g after 4000 cycles at 1.8 A/g | 73.4 mA·h/g at 6.0 A/g | This work |
Material | Cycling performance(low rate) | Cycling performance(high rate) | Rate capability | Ref. |
---|---|---|---|---|
MnO@NGS | 215 mA·h/g after 50 cycles at 100 mA/g | 114.6 mA·h/g after 300 cycles at 500 mA/g | 18.9 mA·h/g at 1.0 A/g | [ |
V?MnO2 | 131 mA·h/g after 100 cycles at 66 mA/g | — | 64 mA·h/g at 1.064 A/g | [ |
α?MnO2 | 147 mA·h/g after 50 cycles at 83 mA/g | — | 16 mA·h/g at 1.666 A/g | [ |
Cu?MnO | 288 mA·h/g after 200 cycles at 150 mA/g | 100 mA·h/g after 1000 cycles at 900 mA/g | 156 mA·h/g at 0.9 A/g | [ |
Mn2O3 | 233 mA·h/g after 120 cycles at 308 mA/g | 146 mA·h/g after 3000 cycles at 3080 mA/g | 162 mA·h/g at 3.080 A/g | [ |
Mn2O3@PPy | 230 mA·h/g after 130 cycles at 100 mA/g | — | 75.6 mA·h/g at 2 A/g | [ |
Mn2O3/Al2O3 | 289 mA·h/g after 125 cycles at 300 mA/g | 118 mA·h/g after 1100 cycles at 1500 mA/g | [ | |
3D?NVO | 487 mA·h/g after 50 cycles at 100 mA/g | 135 mA·h/g after 3000 cycles at 10000 mA/g | 142 mA·h/g at 10 A/g | [ |
Mn3O4@NC | 280 mA·h/g after 80 cycles at 100 mA/g | 97 mA·h/g after 700 cycles at 1000 mA/g | [ | |
SSWM@Mn3O4 | 290 mA·h/g after 50 cycles at 100 mA/g | 110 mA·h/g after 500 cycles at 500 mA/g | 125 mA·h/g at 0.5 A/g | [ |
Mn3O4@C | 390 mA·h/g after 50 cycles at 200 mA/g | 84.1 mA·h/g after 12000 cycles at 50000 mA/g | 133 mA·h/g at 5 A/g | [ |
MnOx@NC | 305 mA·h/g after 600 cycles at 500 mA/g | 100 mA·h/g after 1600 cycles at 2000 mA/g | [ | |
3D MnOx@In2O3 | 260 mA·h/g after 400 cycles at 300 mA/g | 81 mA·h/g after 4000 cycles at 1.8 A/g | 73.4 mA·h/g at 6.0 A/g | This work |
Peak | MnOx | MnOx@In2O3 |
---|---|---|
1 | 0.42396 | 1.05873 |
2 | 0.88535 | 2.43143 |
3 | 1.05504 | 2.72165 |
4 | 1.55795 | 3.40846 |
Peak | MnOx | MnOx@In2O3 |
---|---|---|
1 | 0.42396 | 1.05873 |
2 | 0.88535 | 2.43143 |
3 | 1.05504 | 2.72165 |
4 | 1.55795 | 3.40846 |
1 | Fan X. Y., Han J., Ding Y. L., Deng Y. P., Luo D., Zeng X., Jiang Z., Gou L., Li D. L., Chen Z., Adv. Energy Mater., 2019, 9(28), 20344—20353 |
2 | Rahman M. A., Wong Y. C., Song G., Wen C., J. Porous Mat., 2015, 22(5), 1313—1343 |
3 | Qiu J. X., Jiang Q., Gao Y. K., Peng J. Q., Duan Z. H., Lu X. Y., Chem. J. Chinese Universities, 2018, 39(10), 2238—2244(邱家欣, 江奇, 高艺珂, 彭俊棋, 段志虹, 卢晓英. 高等学校化学学报, 2018, 39(10), 2238—2244 ) |
4 | Feng D. Y., Guo D., Liu X. X., Chem. J. Chinese Universities, 2018, 39(10), 2280—2288(冯东阳, 郭迪, 刘晓霞. 高等学校化学学报, 2018, 39(10), 2280—2288) |
5 | Yang J. G., Li Y. J., Lu D.,Cheng Y. F., Sun W. W., Zheng C. M., Chem. J. Chinese Universities, 2019, 40(7), 1495—1500(杨金戈, 李宇杰, 陆地, 陈宇方, 孙巍巍, 郑春满. 高等学校化学学报, 2019, 40(7), 1495—1500) |
6 | Fan X. Y., Jiang Z., Huang L., Wang X., Han J., Sun R., Gou L., Li D. L., Ding Y. L., ACS Appl. Mater. Inter., 2020, 12(18), 20344—20353 |
7 | Li G. D., Cheng W., Zhang H., Gong Y., Shi F. F., Wang J. Y., Zhang R. F., Chen G., Jin Y., Wu T., Tang Z., Cui Y., Adv. EnergyMater.,2020, 10(9), 1902085 |
8 | Jia H., Wang Z., Tawiah B., Wang Y., Chan C. Y., Fei B., Pan F., Nano Energy, 2020, 70, 104523—104535 |
9 | Shi Y., Chen Y., Shi L., Wang K., Wang B., Li L., Ma Y., Li Y., Sun Z., Ali W., Ding S., Small, 2020, 16(23), e2000730 |
10 | Zeng X. H., Mao J. F., Hao J. N., Wang Z. J., Zhou S., Ling C. D., Guo Z. P., Adv. Energy Mater., 2020, 10(32), 1904163 |
11 | Li J., Chen Y., Guo J., Wang F., Liu H., Li Y., Adv. Funct. Mater., 2020, 30(42), 2004115 |
12 | Fan X., Yang H., Ni K., Han J., Wu Y., Sun R., Gou L., Li D., Funct. Mater. Lett., 2020, 13(3), 2050011—2050014 |
13 | Jiang Y., Ba D., Li Y., Liu J., Adv. Sci., 2020, 7(6), 1902795—1902806 |
14 | Liu N., Wu X., Yin Y., Chen A., Zhao C., Guo Z., Fan L., Zhang N., ACS Appl. Mater. Inter., 2020, 12(25), 28199—28205 |
15 | Gou L., Mou K. L., Fan X. Y., Zhao M. J., Wang Y., Xue D., Li D. L., Dalton Trans., 2020, 49(3), 711—718 |
16 | Fan X. Y., Cui Y., Liu P., Gou L., Xu L., Li D. L., Phys. Chem. Chem. Phys., 2016, 18(32), 22224—22234 |
17 | Ma L., Li L. P., Liu Y. N., Zhu J. H., Meng T., Zhang H., Jiang J., Li C. M., Chem. Commun., 2018, 54(77), 10835—10838 |
18 | Fang G., Zhou J., Pan A., Liang S., ACS Energy Lett., 2018, 3(10), 2480—2501 |
19 | Li H., Ma L., Han C., Wang Z., Liu Z., Tang Z., Zhi C., Nano Energy, 2019, 62, 550—587 |
20 | Wang M., Zheng X., Zhang X., Chao D., Qiao S. Z., Alshareef H. N., Cui Y., Chen W., Adv. Energy Mater., 2020,5(3), 2002904 |
21 | Xu D., Li B., Wei C., He Y. B., Du H., Chu X., Qin X., Yang Q. H., Kang F., Electrochimica Acta, 2014, 133, 254—261 |
22 | Wang C., Wang M., He Z., Liu L., Huang Y., ACS Appl. Energy Mater., 2020, 3(2), 1742—1748 |
23 | Wang K., Zhang X., Han J., Zhang X., Sun X., Li C., Liu W., Li Q., Ma Y., ACS Appl. Mater. Inter., 2018, 10(29), 24573—24582 |
24 | Mao J., Wu F. F., Shi W. H., Liu W. X., Xu X. L., Cai G. F., Li Y. W., Cao X. H., Chinese J. Polymer Sci., 2019, 38(5), 514—521 |
25 | Liu Y., Zhou X., Liu R., Li X., Bai Y., Xiao H., Wang Y., Yuan G., ACS Appl. Mater. Interfaces,2019, 11(21), 19191—19199 |
26 | Fu Y., Wei Q., Zhang G., Wang X., Zhang J., Hu Y., Wang D., Zuin L., Zhou T., Wu Y., Sun S., Adv. Energy Mater., 2018, 8(26), 1801445 |
27 | Gou L., Xue D., Mou K. L., Zhao S. P., Wang Y., Fan X. Y., Li D. L., J. Electrochem. Soc., 2019, 166(13), A3362—A3368 |
28 | Fan X., Ni K., Han J., Wang S., Gou L., Li D. L., Funct. Mater. Lett., 2019, 12(3),1950073 |
29 | Wu B., Zhang G., Yan M., Xiong T., He P., He L., Xu X., Mai L., Small, 2018, 14(13), e1703850 |
30 | Huang J., Wang Z., Hou M., Dong X., Liu Y., Wang Y., Xia Y., Nat. Commun., 2018, 9(1), 2906 |
31 | Fan X., Li S., Lu L., Electrochimica Acta,2016,200, 152—160 |
32 | Wang Q., Sun J., Wang Q., Zhang D., Xing L. L., Xue X., J. Mater. Chem. A,2015,3, 5083—5091 |
33 | Jiang B., Xu C., Wu C., Dong L., Li J., Kang F., Electrochimica Acta,2017,229, 422—428 |
34 | Li W., Gao X., Chen Z., Guo R., Zou G., Hou H., Deng W., Ji X., Zhao J., Chem. Eng. J., 2020, 402, 125509 |
35 | Alfaruqi M. H., Islam S., Mathew V., Song J., Kim S., Tung D. P., Jo J., Kim S., Baboo J. P., Xiu Z., Kim J., Appl. Surf. Sci., 2017, 404, 435—442 |
36 | Alfaruqi M. H., Gim J., Kim S., Song J., Jo J., Kim S., Mathew V., Kim J., J.Power Sources, 2015, 288, 320—327 |
37 | Fenta F. W., Olbasa B. W., Tsai M. C., Weret M. A., Zegeye T. A., Huang C. J., Huang W. H., Zeleke T. S., Sahalie N. A., Pao C. W., Wu S. h., Su W. N., Dai H., Hwang B. J., J. Mater. Chem. A, 2020, 8, 17595—17607 |
38 | Feng D., Gao T. N., Zhang L., Guo B., Song S., Qiao Z. A., Dai S., Nanomicro Lett., 2019, 12(1), 1—13 |
39 | Liu Y., Zhou X., Liu R., Li X., Bai Y., Xiao H., Wang Y., Yuan G., ACS Appl. Mater. Interfaces, 2019, 11(21), 19191—19199 |
40 | Gou L., Mou K. L., Fan X. Y., Zhao M. J., Wang Y., Xue D., Li D. L., Dalton Trans., 2020, 49(3), 711—718 |
41 | Li Q., Rui X., Chen D., Feng Y., Xiao N., Gan L., Zhang Q., Yu Y., Huang S., Nanomicro Lett., 2020, 12(1), 1—12 |
42 | Sun M., Li D. S., Wang Y. F., Liu W. L., Ren M. M., Kong F. G., Wang S. J., Guo Y. Z., Liu Y. M., Chem. Electro. Chem., 2019, 6(9), 2510—2516 |
43 | Zhu C., Fang G., Zhou J., Guo J., Wang Z., Wang C., Li J., Tang Y., Liang S., J. Mater. Chem. A, 2018, 6(20), 9677—9683 |
44 | Tan Q., Li X., Zhang B., Chen X., Tian Y., Wan H., Zhang L., Miao L., Wang C., Gan Y., Jiang J., Wang Y., Wang H., Adv. Energy Mater., 2020, 10(38), 2001050 |
45 | Fu Y., Wei Q., Zhang G., Wang X., Zhang J., Hu Y., Wang D., Zuin L., Zhou T., Wu Y., Sun S., Adv. Energy Mater., 2018, 8(26), 1801445 |
[1] | ZHANG Shiyu, HE Runhe, LI Yongbing, WEI Shijun, ZHANG Xingxiang. Fabrication of Lithium-sulfur Battery Cathode with Radiation Crosslinked Low Molecular Weight of Polyacrylonitrile and the Mechanism of Sulfur Storage [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210632. |
[2] | GAO Xiaole, WANG Jiaxin, LI Zhifang, LI Yanchun, YANG Donghua. Synthesis of NiOx-ZSM-5 Composite Materials and Its Electrocatalytic Hydrogen Evolution Performance in Microbial Electrolysis Cell [J]. Chem. J. Chinese Universities, 2021, 42(9): 2886. |
[3] | BAO Junquan, ZHENG Shibing, YUAN Xuming, SHI Jinqiang, SUN Tianjiang, LIANG Jing. An Organic Salt PTO(KPD)2 with Enhanced Performance as a Cathode Material in Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(9): 2911. |
[4] | WANG Yimeng, LIU Kai, WANG Baoguo. Coating Strategies of Ni-rich Layered Cathode in LIBs [J]. Chem. J. Chinese Universities, 2021, 42(5): 1514. |
[5] | WANG Renheng, XIAO Zhe, LI Yan, SUN Yiling, FAN Shuting, ZHENG Junchao, QIAN Zhengfang, HE Zhenjiang. Synthesis of Li2FeP2O7 Cathode Material at Different Temperatures and Its Electrochemical Performance for Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(4): 1299. |
[6] | ZHANG Huishuang, GAO Yanxiao, WANG Qiuxian, LI Xiangnan, LIU Wenfeng, YANG Shuting. High-low Temperature Properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 Cathode Material by Hydrothermal Synthesis with CTAB Assisted [J]. Chem. J. Chinese Universities, 2021, 42(3): 819. |
[7] | HUANG Yongfeng, HUANG Wenting, LIU Wenbao, LIU Yuefeng, LIU Wei, XU Chengjun. Mechanism of Storage and Capacity Attenuation of V2O5 as Cathode of Zinc-ion Battery [J]. Chem. J. Chinese Universities, 2020, 41(8): 1859. |
[8] | LU Di,ZHENG Chunman,CHEN Yufang,LI Yujie,ZHANG Hongmei. Synthesis of Li-rich Layers/Spinel/Carbon Composite Cathode Materials with Phenol Formaldehyde Resin and Its Electrochemical Performance† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1684. |
[9] | LI Xin, CHEN Liang, MA Xiaotao, ZHANG Ding, XU Shoudong, ZHOU Xianxian, DUAN Donghong, LIU Shibin. Preparation of V2O3 Hollow Spheres for Lithium Sulfur Batteries † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1972. |
[10] | YAO Fengnan,LI Yu,FENG Wei. Synthesis and Electrochemical Performance of Carbon-coated FeF2 Nanocomposite† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1418. |
[11] | YANG Jinge, LI Yujie, LU Di, CHEN Yufang, SUN Weiwei, ZHENG Chunman. Morphology Control and Lithium Storage Performance of Micro/nano Li-rich Cathode Material† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1495. |
[12] | MA Dongwei,TIAN Runsai,LIU Zhenjiang,FENG Yuanyuan,DING Hongyu,FENG Jijun. Microwave-assisted Synthesis and Electrochemical Performance of Na-Doped Cathode Materials Li2-xNaxMnSiO4/C† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1280. |
[13] |
CHEN Hong,DU Yonghui,ZHANG Xin,LIU Wenyan,ZHOU Xiaoming.
Preparation and Electrochemical Properties of Poly(3-hexylthiophene)-coated Lithium-rich Layered Cathode Material Li1.18Ni0.15Co0.15Mn0.52 |
[14] | Jian LIU,Haihui DU,Tianjiang SUN,Qingshun NIAN,Haixia LI,Zhanliang TAO. Preparation and Electrochemical Properties of Calcium Bronze/Carbon Nanotubes Composites † [J]. Chem. J. Chinese Universities, 2019, 40(12): 2526. |
[15] | WANG Kun, HUANG Mengyi, ZHANG Xiaosong, HUANG Junjie, DENG Xiang, LIU Changlu. Preparation and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2@C Composite† [J]. Chem. J. Chinese Universities, 2018, 39(1): 141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||