Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (12): 20240346.doi: 10.7503/cjcu20240346
• Article: Inorganic Chemistry • Previous Articles Next Articles
JI Heming1,2, ZHANG Yuhang1, MIAO Tingting1, WANG Yiqian1, YU Xiaorui1, WANG Chunyan1(), WANG Runwei2(
)
Received:
2024-07-10
Online:
2024-12-10
Published:
2024-09-09
Contact:
WANG Chunyan, WANG Runwei
E-mail:chunyan@jlu.edu.cn;rwwang@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
JI Heming, ZHANG Yuhang, MIAO Tingting, WANG Yiqian, YU Xiaorui, WANG Chunyan, WANG Runwei. Mesoporous Organosilicon Hollow Nanospheres Immobilized Uricase for the Determination of Uric Acid[J]. Chem. J. Chinese Universities, 2024, 45(12): 20240346.
Sample | Serum sample | UA standard solution | MONs⁃uricase | MONs | Glycine buffer | Deionized water |
---|---|---|---|---|---|---|
Test | 0.4 mL | 0.1 mL | 3.0 mg | 0 mg | 2.0 mL | 0.5 mL |
Control | 0.4 mL | 0 mL | 3.0 mg | 0 mg | 2.1 mL | 0.5 mL |
Standard | 0 mL | 0.1 mL | 3.0 mg | 0 mg | 2.4 mL | 0.5 mL |
Blank | 0 mL | 0 mL | 0 mg | 3.0 mg | 2.5 mL | 0.5 mL |
Table 1 Serum uric acid detection program
Sample | Serum sample | UA standard solution | MONs⁃uricase | MONs | Glycine buffer | Deionized water |
---|---|---|---|---|---|---|
Test | 0.4 mL | 0.1 mL | 3.0 mg | 0 mg | 2.0 mL | 0.5 mL |
Control | 0.4 mL | 0 mL | 3.0 mg | 0 mg | 2.1 mL | 0.5 mL |
Standard | 0 mL | 0.1 mL | 3.0 mg | 0 mg | 2.4 mL | 0.5 mL |
Blank | 0 mL | 0 mL | 0 mg | 3.0 mg | 2.5 mL | 0.5 mL |
1 | Chen W. K., Lu C. H., Xu J., Yang Y. C., Li J. Q., Chinese J. Struct. Chem., 2002, 21(2), 186—190 |
陈文凯, 陆春海, 许娇, 杨迎春, 李俊篯. 结构化学, 2002, 21(2), 186—190 | |
2 | Wang J. G., Staessen J. A., Fagard R. H., Birkenhäger W. H., Gong L., Liu L., Hypertension, 2001, 37(4), 1069—1074 |
3 | Martinon F., Immunol. Rev., 2010, 233(1), 218—232 |
4 | Huang S. H., Wu T. K., Eur. J. Biochem., 2004, 271(3), 517—523 |
5 | Hu X., Wang Y., Liu C., Jin Z., Tian Y., Int. J. Biol. Macromol., 2018, 111, 28—32 |
6 | Wu D., Lu H. F., Xie H., Wu J., Wang C. M., Zhang Q. L., Sens. Actuat. B: Chem., 2015, 221, 1433—1440 |
7 | Galbán J., Andreu Y., Almenara M. J., de Marcos S., Castillo J. R., Talanta, 2001, 54(5), 847—854 |
8 | Wang J., Chem. Rev., 2008, 108(2), 814—825 |
9 | Wang X., Li F., Cai Z., Liu K., Li J., Zhang B., He J., Anal. Bioanal. Chem., 2018, 410(10), 2647—2655 |
10 | Zhao Y., Yang X., Lu W., Liao H., Liao F., Microchim. Acta, 2009, 164(1), 1—6 |
11 | Zhang Y., Yan M., Gao P., Jiang J., Zhang G., Li J., Shuang S., Appl. Biochem. Microbiol., 2015, 51(4), 470—478 |
12 | Chauhan N., Preeti, Pinky, Pundir C., Anal. Sci., 2014, 30(4), 501—506 |
13 | Fang X., Zang J., Wang X., Zheng M. S., Zheng N., J. Mater. Chem. A, 2014, 2(17), 6191—6197 |
14 | Phaugat K., Bhambi M., Renu, Pundir C. S., J. Mol. Catal. B: Enzym., 2010, 62(1), 27—31 |
15 | Nohair B., Thao P. T. H., Nguyen V. T. H., Tien P. Q., Phuong D. T., Hy L. G., Kaliaguine S., J. Phys. Chem. C, 2012, 116(20), 10904—10912 |
16 | Guan L., Di B., Su M., Qian J., Biotechnol. Lett., 2013, 35(8), 1323—1330 |
17 | Bhargava A. K., Lal H., Pundir C. S., J. Biochem. Biophy. Methods, 1999, 39(3), 125—136 |
18 | Zhang K., Zhang N., Zhang L., Wang H., Shi H., Liu Q., RSC Adv., 2018, 8(10), 5280—5285 |
19 | Hoffmann F., Cornelius M., Morell J., Fröba M., Angew. Chem. Int. Ed., 2006, 45(20), 3216—3251 |
20 | Mizoshita N., Tani T., Inagaki S., Chem. Soc. Rev., 2011, 40(2), 789—800 |
21 | Wang W., Lofgreen J. E., Ozin G. A., Small, 2010, 6(23), 2634—2642 |
22 | van der Voort P., Esquivel D., de Canck E., Goethals F., van Driessche I., Romero⁃Salguero F. J., Chem. Soc. Rev., 2013, 42(9), 3913—3955 |
23 | Guan B., Wang X., Xiao Y., Liu Y., Huo Q., Nanoscale, 2013, 5(6), 2469—2475 |
24 | Kumar V., Misra N., Paul J., Dhanawade B. R., Varshney L., Polymer, 2014, 55(11), 2652—2660 |
25 | Lee J., Farha O. K., Roberts J., Scheidt K. A., Nguyen S. T., Hupp J. T., Chem. Soc. Rev., 2009, 38(5), 1450—1459 |
26 | Xuan W., Zhu C., Liu Y., Cui Y., Chem. Soc. Rev., 2012, 41(5), 1677—1695 |
27 | Zou H., Wang R., Li X., Wang X., Zeng S., Ding S., Li L., Zhang Z., Qiu S., J. Mater. Chem. A, 2014, 2(31), 12403—12412 |
28 | Fang X., Liu S., Zang J., Xu C., Zheng M. S., Dong Q. F., Sun D., Zheng N., Nanoscale, 2013, 5(15), 6908—6916 |
29 | Bui S., von Stetten D., Jambrina P. G., Prangé T., Colloc'h N., de Sanctis D., Royant A., Rosta E., Steiner R. A., Angew. Chem. Int. Ed., 2014, 53(50), 13710—13714 |
30 | Poyraz B., Int. J. Biol. Macromol., 2018 , 117,713—720 |
31 | Wu S. H., Hung Y., Mou C. Y., Chem. Mater., 2013, 25(3), 352—364 |
32 | Kosuge K., Sato T., Kikukawa N., Takemori M., Chem. Mater., 2004, 16(5), 899—905 |
[1] | LAI Xiaonan, SHEN Chenglong, SHAN Chongxin. Aggregation Regulation-assisted Multicolor Carbon Dots Fluorescent Phosphor [J]. Chem. J. Chinese Universities, 0, (): 20240407. |
[2] | SHI Wuyi, BAO Yu, CUI Shuxun. Research Progress on the Molecular Structure of Amorphous Chalcogen Elements [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240054. |
[3] | LIU Xiangyu, TANG Jiaqi, TAN Zhifu, PAN Caofeng. High-performance Two-dimensional Tungsten Diselenide-based Photodetector [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230217. |
[4] | LI Mengdie, WANG Zumin, QI Jian, YU Ranbo. Progress in the Construction of Metal Oxide Heterojunctions and Their Application in Photocatalytic CO2 Reduction [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230196. |
[5] | SONG Xin, GAO Shenzheng, XU Shanlei, XU Hao, ZHOU Xinjie, ZHU Mengbing, HAO Rulin, ZHU Weiguo. Progress on the Efficiency Regulation of Organic Solar Cells by Volatile Solid Additives [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230151. |
[6] | SUN Jinghua, GUO Chunyan, DONG Jie, ZHANG Ruiping. Melanin-based Targeted Nanodrugs for Photothermal Therapy of Breast Cancer [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230044. |
[7] | REN Yi, KAN Yuanyuan, SUN Yanna, LI Jianfeng, GAO Ke. Research Progress of Graphdiyne-based Materials in Photovoltaic Applications [J]. Chem. J. Chinese Universities, 2023, 44(7): 20220752. |
[8] | GUO Yuntong, CHEN Zhenyu, GE Ziyi. Effects of Different Halogenated End-groups Non-fullerene Acceptors on the Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230084. |
[9] | LI Ruisong, MIAO Zhengpei, LI Jing, TIAN Xinlong. Research Progress on Hollow Precious Metal-based Nanostructures for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220730. |
[10] | LIU Junhui, LI Zijia, WU Shuchang, XIE Zailai, CHEN Yiquan. Synthesis of Biochar Derived from Jujun Grass and the Application in Supercapacitors [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220653. |
[11] | ZHANG Lingling, DONG Huanhuan, HE Xiangxi, LI Li, LI Lin, WU Xingqiao, CHOU Shulei. Progress of Hollow Carbon Materials as Anode for Sodium-ion Battery [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220620. |
[12] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[13] | LI Lin, QI Fenglian, QIU Lili, MENG Zihui. Dynamic Amorphous Photonic Structure Patterns Assembled by Hexagonal Magnetic Nanosheets [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220123. |
[14] | CHEN Weiqin, LYU Jiamin, YU Shen, LIU Zhan, LI Xiaoyun, CHEN Lihua, SU Baolian. Preparation of Organic Hybrid Mesoporous Beta Zeolite for Alkylation of Mesitylene with Benzyl Alcohol [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220086. |
[15] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, JIANG Wei, HUANG Weiqiu, CHEN Ruoyu. Activation of Biochar from Cattail and the VOCs Adsorption Application [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210824. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||